VTC1020 API User Manual v1.2
- 05/04/2018 -NEXCOM

1. Introduction
The VTC1020 API is used for VTC1020 only.
2. Using VTC1020 API
The redistributable files are provided in the \_LIB directory (VTC1020.dll) and should be included in the installation package for your application.
The VTC1020 API files (VTC1020.dll) must be placed in the same directory as your application's executable file.
3. Sample

#include "VTC1020.h"
#pragma comment(lib, "VTC1020.lib")
int _tmain(int argc, _TCHAR* argv[])

{
    Connect();
    SetWiFiControl(1);
    Disconnect();

return 0;

}
4. VTC1020 Structures
	Phone_Number_t structure
  The Phone_Number_t structure is used to store a phone number.
Syntax

const unsigned int g_phone_number_Len = 20;
typedef struct Phone_Number
{

char
phone_number[g_phone_number_Len];
} Phone_Number_t;
typedef struct Phone_Number_W

{

  wchar_t phone_number[g_phone_number_Len]; 

} Phone_Number_W_t;
Members
  phone_number
    20 BYTE data
Remarks
None



5. VTC1020 Functions
	Get_DLL_Version
  This function gets version of “VTC1020.dll”.

Syntax

void Get_DLL_Version(

int *pnMajorVersion, 

int *pnMinorVersion
);
Parameters
pnMajorVersion [out]
Pointer to an int variable that receives the “Major Version”.
pnMinorVersion [out]
Pointer to an int variable that receives the “Minor Version”.
Return Values
None
Remarks
  The current version of “VTC1020.dll” is 1.2.


	Get_BIOS_Version
  This function gets version of BIOS.

Syntax

bool Get_BIOS_Version(

char *szBIOS_Ver,

int nLen
);
bool Get_BIOS_Version_W(

wchar_t *szBIOS_Ver,

int nLen
);
Parameters
szBIOS_Ver [in]
Pointer to the buffer that will receive the version of BIOS.
nLen [in]
Specifies the maximum number of characters to copy to the buffer.
Return Values
Return true => Success.

Return false => Failed.

Remarks
  None.


	Connect
  This function connects to serial port (COM5).

Syntax

int Connect();
Parameters
None
Return Values
Return 1 => success

Return -1 => Unable to open serial port.

Return -5 => Failed to create a thread.

Remarks
  COM5 setting : I/O Range is 02F0 – 02F7, IRQ is 0x06(06).


	Disconnect
  This function disconnects from a serial port (COM5).

Syntax

void Disconnect();
Parameters
None
Return Values
None
Remarks
  None


	GetMCUVersion
  This function gets version of MCU firmware.

Syntax

int  GetMCUVersion(

int *pnMCUVersion
);
Parameters
pnMCUVersion [out]
Pointer to an int variable that receives the version of MCU firmware.

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	GetHWVersion
  This function is used to get version of PCB (VTC1020 board).

Syntax

int  GetHWVersion(

int *pnHWVersion
);
Parameters
pnHWVersion [out]
Pointer to an int variable that receives the version of PCB.

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	GetDTPVersion
  This function is used to get version of “MCU data transmission protocol”.

Syntax

int  GetDTPVersion(

int *pnDTPVersion
);
Parameters
pnDTPVersion [out]
Pointer to an int variable that receives the version of DTP.

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	GetBLVersion
  This function is used to get version of MCU bootloader.

Syntax

int  GetBLVersion(

int *pnBLVersion
);
Parameters
pnBLVersion [out]
Pointer to an int variable that receives the version of MCU bootloader.

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	GetIgnitionStatus
  This function gets ignition status.

Syntax

int  GetIgnitionStatus(

int *pnIgnitionStatus
);
Parameters
pnIgnitionStatus [out]
Pointer to an int variable that receives the ignition status.

Value
Meaning
0

Ignition “OFF”
1

Ignition “ON”
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	GetSupplyVoltage
  This function gets supply voltage.

Syntax

int  GetSupplyVoltage(

int *pnSupplyVoltage
);
Parameters
pnSupplyVoltage [out]
Pointer to an int variable that receives the supply voltage.

Supply voltage : 0 ~ 38 V

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	GetPowerType
  This function gets power type.

Syntax

int  GetPowerType(

int *pnPowerType
);
Parameters
pnPowerType [out]
Pointer to an int variable that receives the power type.

Value
Meaning
0

9~36V(default)
1

Reserved(9~36)
2

24V
3

12V
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	GetDelayTimeOption
  This function gets delay time option.

Syntax

int  GetDelayTimeOption(

int *pnPowerOff, 

int *pnPowerOn, 

int *pnDelayOffEnable, 

int *pnDelayOnEnable
);
Parameters
pnPowerOff [out]
Pointer to an int variable that receives the power off setting.

Value
Meaning
0

20 seconds
1

1 minute
2

5 minutes
3

10 minutes
4

30 minutes
5

1 hour
6

6 hours
7

18 hours
pnPowerOn [out]
Pointer to an int variable that receives the power on setting.

Value
Meaning
0

10 seconds
1

30 seconds
2

1 minute
3

5 minutes
4

10 minutes
5

15 minutes
6

30 minutes
7

1 hour
pnDelayOffEnable [out]
Pointer to an int variable that receives the delay off is enable or disable.

Value
Meaning
0

Disable
1

Enable
pnDelayOnEnable [out]
Pointer to an int variable that receives the delay on is enable or disable.

Value
Meaning
0

Disable
1

Enable
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	GetStartupShutdownOption
  This function gets startup shutdown option setting.

Syntax

int  GetStartupShutdownOption(

int *pnStartupShutdownOption
);
Parameters
pnStartupShutdownOption [out]
Pointer to an int variable that receives the startup shutdown option setting.

Value
Meaning
12V
24V
Startup

Shutdown

Startup

Shutdown

0
11.5V
10.5V
23.0V
21.0V
1
12.0V
11.0V
24.0V
22.0V
2
12.5V
11.0V
25.0V
22.0V
3
12.5V
11.5V
25.0V
23.0V
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	GetAlarmTimer
  This function gets real-time clock alarm setting.

Syntax

int  GetAlarmTimer(

int *pnHour, 

int *pnMin, 

int *pnSec
);
Parameters
pnHour [out]
Pointer to an int variable that receives the hour.

pnMin [out]
Pointer to an int variable that receives the minute.

pnSec [out]
Pointer to an int variable that receives the second.
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  A real time clock alarm is a feature that can be used to allow a computer
to 'wake up' after shut down to execute tasks every day or on a certain day.


	GetWWANStatus
  This function gets wireless wide area network (WWAN) status.

Syntax

int  GetWWANStatus(

int *pnWWAN_Enable, 

int *pnWWAN_Wakeup_Enable
);
Parameters
pnWWAN_Enable [out]
Pointer to an int variable that receives the WWAN is enable or disable.

Value
Meaning
0

Disable

1

Enable

pnWWAN_Wakeup_Enable [out]
Pointer to an int variable that receives the WWAN Wakeup
is enable or disable.

Value
Meaning
0

Disable

1

Enable

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	GetWiFiStatus
  This function is used to get WiFi status.

Syntax

int  GetWiFiStatus(

int *pnEnable, 

int *pnPower
);
Parameters
pnEnable [out]
Pointer to an int variable that receives the WiFi is enable or disable.

Value
Meaning
0

Disable

1

Enable

pnPower [out]
Pointer to an int variable that receives the WiFi is power on or off.

Value
Meaning
0

Power off
1

Power on
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	GetGPSStatus
  This function gets Global Positioning System (GPS) is enable or disable.

Syntax

int  GetGPSStatus(

int *pnGPSStatus
);
Parameters
pnGPSStatus [out]
Pointer to an int variable that receives the GPS status.

Value
Meaning
0

Disable

1

Enable

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	GetUSBStatus
  This function is used to get USB is enable or disable.

Syntax

int  GetUSBStatus(

int *pnStatus
);
Parameters
pnStatus [out]
Pointer to an int variable that receives the USB status.

Value
Meaning
0

Disable

1

Enable

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	GetRTCStatus
  This function gets Real-time clock (RTC) alarm is enable or disable.

Syntax

int  GetRTCStatus(

int *pnRTCStatus
);
Parameters
pnRTCStatus [out]
Pointer to an int variable that receives the RTC alarm status.

Value
Meaning
0

Disable

1

Enable

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	GetWatchdogConfig
  This function gets watchdog setting.

Syntax

int  GetWatchdogConfig(

int *pnWDT_Enable, 

int *pnTimeout
);
Parameters
pnWDT_Enable [out]
Pointer to an int variable that receives the WDT is enable or disable.

Value
Meaning
0

Disable

1

Enable

pnTimeout [out]
Pointer to an int variable that receives the timeout setting.

Timeout : 3 ~ 255 seconds
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	GetMDOStatus
  This function gets MCU GPO status.

Syntax

int  GetMDOStatus(

unsigned char *pbyMDO
);
Parameters
pbyMDO [out]
Pointer to an int variable that receives the MCU GPO status.
Bit
Value
Meaning
Bit 0
0

MCU GPO 1 is low
1

MCU GPO 1 is high
Bit 1
0

MCU GPO 2 is low
1

MCU GPO 2 is high
Bit 2
0

MCU GPO 3 is low
1

MCU GPO 3 is high
Bit 3
0

MCU GPO 4 is low
1

MCU GPO 4 is high
Bit 4
0

MCU GPO 5 is low
1

MCU GPO 5 is high
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	GetMDIStatus
  This function gets MCU GPI status.

Syntax

int  GetMDIStatus(

unsigned char *pbyMDI
);
Parameters
pbyMDI [out]
Pointer to an int variable that receives the MCU GPI status.

Bit
Value
Meaning
Bit 0
0

MCU GPI 1 is low
1

MCU GPI 1 is high
Bit 1
0

MCU GPI 2 is low
1

MCU GPI 2 is high
Bit 2
0

MCU GPI 3 is low
1

MCU GPI 3 is high
Bit 3
0

MCU GPI 4 is low
1

MCU GPI 4 is high
Bit 4
0

MCU GPI 5 is low
1

MCU GPI 5 is high
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	GetGsensorData
  This function gets G-sensor (Accelerometer) data.

Syntax

int  GetGsensorData(

int nRegisterIndex, 

unsigned char *pbyGsensorData, 

int nGsensorDataLen
);
Parameters
nRegisterIndex [in]
An int variable that specify register index of G-sensor data.

Register index (0, 29 ~ 57)

pbyGsensorData [out]
  Pointer to an array that receives the length of the G-sensor data.
  nGsensorDataLen [in]
    Integer that specifies the number of elements in the pbyGsensorData array.
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  More G-sensor information please read “G-sensor REGISTER MAP” table

Example

1. I want to read “X-Axis Data 0”
//“X-Axis Data 0” register number is 50;
unsigned char byData;
GetGsensorData(50, &byData, 1 );
2. I want to get “X-Axis Data 0”, “X-Axis Data 1”, “Y-Axis Data 0”, “Y-Axis Data 1”
“Z-Axis Data 0”, “Z-Axis Data 1”
//“X-Axis Data 0” register number is 50;

//“X-Axis Data 1” register number is 51;

//“Y-Axis Data 0” register number is 52;

//“Y-Axis Data 1” register number is 53;

//“Z-Axis Data 0” register number is 54;

//“Z-Axis Data 1” register number is 55;
unsigned char byData[6];
GetGsensorData(50, byData, 6 );



	GetCANSwitchStatus
  This function gets CANbus is switched to CAN2.0B or OBDII.

Syntax

int  GetCANSwitchStatus(

int *pnCANSwitchStatus
);
Parameters
pnCANSwitchStatus [out]
Pointer to an int variable that receives the CANbus status.

Value
Meaning
0

CAN2.0B
1

OBDII (SAE J1939)
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	GetAudioSwitchStatus
  This function gets audio is switched to driver, vehicle or external.

Syntax

int  GetAudioSwitchStatus(

int * pnAudioSwitchStatus
);
Parameters
pnAudioSwitchStatus [out]
Pointer to an int variable that receives the audio status.

Value
Meaning
0

Driver
1

Vehicle (Internal)
2
External
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	GetMDIOModeStatus
  This function gets MCU GPIO mode.

  MCU GPIO can be changed to GPI or GPO.

Syntax

int  GetMDIOModeStatus(

unsigned char *pbyMDIOModeStatus
);
Parameters
pbyMDIOModeStatus [out]
Pointer to an int variable that receives the MCU GPIO mode.

Bit
Value
Meaning
Bit 0
0

MCU GPIO 1 switch to GPI 1
1

MCU GPIO 1 switch to GPO 1
Bit 1
0

MCU GPIO 2 switch to GPI 2
1

MCU GPIO 2 switch to GPO 2
Bit 2
0

MCU GPIO 3 switch to GPI 3
1

MCU GPIO 3 switch to GPO 3
Bit 3
0

MCU GPIO 4 switch to GPI 4
1

MCU GPIO 4 switch to GPO 4
Bit 4
0

MCU GPIO 5 switch to GPI 5
1

MCU GPIO 5 switch to GPO 5
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	GetInputFrequency
  This function gets input frequency.

Syntax

int  GetInputFrequency(

int *pnInputFrequency
);
Parameters
pnInputFrequency [out]
Pointer to an int variable that receives the input frequency.

input frequency : 0 ~ 65535 Hz

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	SetRTCTimer
  This function sets Real-time clock (RTC) setting.

Syntax

int  SetRTCTimer(

int nHour, 

int nMin, 

int nSec
);
Parameters
nHour [in]
  The hour. The valid values for this member are 0 through 23.
nMin [in]
The minute. The valid values for this member are 0 through 59.
nSec [in]
The second. The valid values for this member are 0 through 59.
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
  This function must be called before calling “SetAlarmTimer”.


	SetDelayTimeOption
  This function sets delay time option.

Syntax

int  SetDelayTimeOption(

int nPowerOffDelayTime, 

int nPowerOffDelayTime_Enable, 

int nPowerOnDelayTime, 

int nPowerOnDelayTime_Enable
);
Parameters
nPowerOffDelayTime [in]
Value
Meaning
0

20 seconds
1

1 minute
2
5 minutes
3
10 minutes
4
30 minutes
5
1 hour
6
6 hours
7
18 hours
nPowerOffDelayTime_Enable [in]
Value
Meaning
0

Disable

1

Enable

nPowerOnDelayTime [in]
Value
Meaning
0

10 seconds
1

30 seconds
2
1 minute
3
5 minutes
4
10 minutes
5
15 minutes
6
30 minutes
7
1 hour
nPowerOnDelayTime_Enable [in]
Value
Meaning
0

Disable

1

Enable

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
  None


	SetStartupShutdownOption
  This function sets the startup and shutdown option.

Syntax

int  SetStartupShutdownOption(

int nOption
);
Parameters
nOption [in]
New option type.

Value
Meaning
12V
24V
Startup

Shutdown

Startup

Shutdown

0
11.5V
10.5V
23.0V
21.0V
1
12.0V
11.0V
24.0V
22.0V
2
12.5V
11.0V
25.0V
22.0V
3
12.5V
11.5V
25.0V
23.0V
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
  None


	SetAlarmTimer
  This function sets real-time clock alarm setting.

Syntax

int  SetAlarmTimer(

int nHour, 

int nMin, 

int nSec
);
Parameters
nHour [in]
  The hour. The valid values for this member are 0 through 23.
nMin [in]
The minute. The valid values for this member are 0 through 59.
nSec [in]
The second. The valid values for this member are 0 through 59.
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
  A real time clock alarm is a feature that can be used to allow a computer
to 'wake up' after shut down to execute tasks every day or on a certain day.
  Before use “SetAlarmTimer”, the current time have to set by calling “SetRTCTimer”.
  For example : 
  Now is 10:00 o’clock, then system must wake up at 11:00 o’clock.
  SetRTCTimer(10,0,0);

  SetAlarmTimer(11,0,0);

  SetRTCControl(1);



	SetWWANControl
  This function sets wireless wide area network (WWAN) settings.

Syntax

int  SetWWANControl(

int nWWAN_Enable, 

int nWWAN_Wakeup_Enable
);
Parameters
nWWAN_Enable [in]
Value
Meaning
0

Disable

1

Enable

nWWAN_Wakeup_Enable [in]
Value
Meaning
0

Disable

1

Enable

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
  None


	SetWiFiControl
  This function is used to set WiFi is enable or disable and power on or off.

Syntax

int  SetWiFiControl(

int nEnable, 

int nPower
) ;
Parameters
nEnable [in]
Value
Meaning
0

Disable

1

Enable

nPower [in]
Value
Meaning
0

Power off
1

Power on
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
  Power on/off is used for USB module only.


	SetGPSControl
  This function sets Global Positioning System (GPS) is enable or disable.

Syntax

int  SetGPSControl(

int nEnable
);
Parameters
nEnable [in]
Value
Meaning
0

Disable

1

Enable

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
  None


	SetUSBControl
  This function is used to set USB is enable or disable.

Syntax

int  SetUSBControl(

int nEnable
);
Parameters
nEnable [in]
Value
Meaning
0

Disable

1

Enable

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
  None


	SetRTCControl
  This function sets real-time clock alarm is enable or disable.

Syntax

int  SetRTCControl(

int nEnable
);
Parameters
nEnable [in]
Value
Meaning
0

Disable

1

Enable

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
  None


	SetWatchdogControl
  This function sets watchdog is enable or disable.

Syntax

int  SetWatchdogControl(

int nWDT_Enable
);
Parameters
nWDT_Enable [in]
Value
Meaning
0

Disable

1

Enable

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
  None


	SetWatchdogTimer
  This function sets watchdog timeout.

Syntax

int  SetWatchdogTimer(

int nWDT_TimeOut
);
Parameters
nWDT_TimeOut [in]
The second. The valid values for this member are 3 through 255.
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
  None


	SetFlashUpdate
  This function updates Flash Memory (Write settings to flash memory).

Syntax

int  SetFlashUpdate();
Parameters
  None
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Remarks
  After changing settings, please call this function to keep settings.


	SetMDOControl
  This function sets MCU GPO is Low or High.

Syntax

int  SetMDOControl(

unsigned char byMDO
);
Parameters
byMDO [in]
Bit
Value
Meaning
Bit 0
0

MCU GPO 1 is low
1

MCU GPO 1 is high
Bit 1
0

MCU GPO 2 is low
1

MCU GPO 2 is high
Bit 2
0

MCU GPO 3 is low
1

MCU GPO 3 is high
Bit 3
0

MCU GPO 4 is low
1

MCU GPO 4 is high
Bit 4
0

MCU GPO 5 is low
1

MCU GPO 5 is high
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
  None


	SetGsensorData
  This function sets G-sensor (Accelerometer) Data.

Syntax

int  SetGsensorData(

int nRegIdx, 

unsigned char *pbyData, 

int nLen
);
Parameters
nRegIdx [in]
An int variable that specify register index of G-sensor data.

Register index (0, 29 ~ 57)
pbyData [in]
An array of BYTE that specify the G-sensor Data.
nLen [in]
Integer that specifies the number of elements in the pbyData array.
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  More G-sensor information please read “G-sensor REGISTER MAP” table

Example

1. I want to write “X-axis offset”
// “X-axis offset” register number is 30;
unsigned char byData = 0x0;
SetGsensorData(30, &byData, 1);
2. I want to write “X-axis offset”, “Y-axis offset”, “Z-axis offset”
//“X-axis offset” register number is 30;

//“Y-axis offset” register number is 31;

//“Z-axis offset” register number is 32;

unsigned char byData[3] = {1,2,3};
SetGsensorData(30, byData, 3 );



	SetCANSwitchControl
  This function sets CANbus is CAN2.0B mode or ODBII mode.

Syntax

int  SetCANSwitchControl(

int nCANSwitch
);
Parameters
nCANSwitch [in]
Value
Meaning
0

CAN2.0B
1

ODBII (SAE J1939)
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
  None


	SetAudioSwitchControl
  This function sets audio is driver, vehicle or external mode.

Syntax

int  SetAudioSwitchControl(

int nAudioSwitch
);
Parameters
nAudioSwitch [in]
Value
Meaning
0

Driver
1

Vehicle (Internal)
2
External
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
  None


	SetMDIOModeControl
  This function sets MCU GPIO is GPO or GPI mode.

Syntax

int  SetMDIOModeControl(

unsigned char byMDIOMode
);
Parameters
byMDIOMode [in]
Bit
Value
Meaning
Bit 0
0

MCU GPIO 1 switch to GPI 1
1

MCU GPIO 1 switch to GPO 1
Bit 1
0

MCU GPIO 2 switch to GPI 2
1

MCU GPIO 2 switch to GPO 2
Bit 2
0

MCU GPIO 3 switch to GPI 3
1

MCU GPIO 3 switch to GPO 3
Bit 3
0

MCU GPIO 4 switch to GPI 4
1

MCU GPIO 4 switch to GPO 4
Bit 4
0

MCU GPIO 5 switch to GPI 5
1

MCU GPIO 5 switch to GPO 5
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
  None


	Get3GAPN
  This function gets APN.

Syntax

int  Get3GAPN(

char *pszAPN, 

int nLen
);
int  Get3GAPN_W(

wchar_t *pszAPN, 

int nLen
);
Parameters
pszAPN [out]
Pointer to the buffer that will receive the APN.
  nLen [in]
    Specifies the maximum number of characters to copy to the buffer.
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Return -10 => Buffer too small.
Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	Get3GDNS
  This function gets DNS.

Syntax

int  Get3GDNS(

int nIndex, 

char *pszDNS, 

int nLen
);
int  Get3GDNS_W(

int nIndex, 

wchar_t *pszDNS, 

int nLen
);
Parameters
  nIndex [in]
An int variable that specify index of DNS.
Index : 0 ~ 1
pszDNS [out]
Pointer to the buffer that will receive the DNS.
  nLen [in]
    Specifies the maximum number of characters to copy to the buffer.
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Return -10 => Buffer too small.
Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	Get3GServerIP
  This function gets Server IP.

Syntax

int  Get3GServerIP(

char *pszServerIP, 

int nLen
);
int  Get3GServerIP_W(

wchar_t *pszServerIP, 

int nLen
);
Parameters
pszServerIP [out]
Pointer to the buffer that will receive the Server IP.
  nLen [in]
    Specifies the maximum number of characters to copy to the buffer.
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Return -10 => Buffer too small.
Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	Get3GServerPort
  This function gets server port.

Syntax

int  Get3GServerPort(

int *pnServerPort
);
Parameters
pnServerPort [out]
Pointer to an int variable that receives the server port.

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	GetIMEI
  This function gets IMEI.

Syntax

int  GetIMEI(

char *pszIMEI, 

int nLen
);
int  GetIMEI_W(

wchar_t *pszIMEI, 

int nLen
);
Parameters
pszIMEI [out]
Pointer to the buffer that will receive the IMEI.
  nLen [in]
    Specifies the maximum number of characters to copy to the buffer.
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Return -10 => Buffer too small.
Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	GetMachineName
  This function gets machine name.

Syntax

int  GetMachineName(

char *pszName, 

int nLen
);
int  GetMachineName_W(

wchar_t *pszName, 

int nLen
);
Parameters
pszName [out]
Pointer to the buffer that will receive the machine name.
  nLen [in]
    Specifies the maximum number of characters to copy to the buffer.
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Return -10 => Buffer too small.

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	GetPhoneNumber
  This function gets phone number.

Syntax

int  GetPhoneNumber(

int nIndex, 

Phone_Number_t *pPhone_Number, 

int nCount
);
int  GetPhoneNumber_W(

int nIndex, 

Phone_Number_W_t *pPhone_Number, 

int nCount
);
Parameters
nIndex [in]
An int variable that specify index of phone number.

index : 0x00 ~ 0x09
pPhone_Number [out]
A reference to a Phone_Number_t structure that receives phone number.
  nCount [in]
    Integer that specifies the number of elements in the pPhone_Number array.
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None
Example

1. Read one phone number (index 1).

Phone_Number_t Phone_Number[1];
GetPhoneNumber(1, Phone_Number, 1);
2. Read three phone number (from index 10 to 12).

Phone_Number_t Phone_Number[3];
GetPhoneNumber(10, Phone_Number, 3);



	GetTrackerStatus
  This function gets Tracker status is enable or disable.

Syntax

int  GetTrackerStatus(

int *pnTracker_Enable
);
Parameters
pnTracker_Enable [out]
Pointer to an int variable that receives the Tracker status.

Value
Meaning
0

Disable
1

Enable
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	GetTrackerMode
  This function gets Tracker Mode.

Syntax

int  GetTrackerMode(

int *pnTrackerMode
);
Parameters
pnTrackerMode [out]
Pointer to an int variable that receives the Tracker Mode.

Value
Meaning
0

Normal mode
1

Continue mode
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	GetTrackerDelayTime
  This function gets Tracker Delay Time.

Syntax

int  GetTrackerDelayTime(

int *pnDelayTime
);
Parameters
pnDelayTime [out]
Pointer to an int variable that receives the Delay Time.

Delay time range : 0 ~ 65535 seconds
60
1 minute
120
2 minutes
180
3 minutes
300
5 minutes
420
7 minutes
600
10 minutes
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	GetTrackerResponseTime
  This function gets Tracker Response Time.

Syntax

int  GetTrackerResponseTime(

int *pnResponseTime
);
Parameters
pnResponseTime [out]
Pointer to an int variable that receives the Response Time.

Delay time range : 0 ~ 65535 seconds
60
1 minute
600
10 minutes
3600
60 minutes
10800
180 minutes
21600
360 minutes
43200
720 minutes
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	GetTrackerThreshtap
  This function gets tap threshold value of tracker information.

Syntax

int  GetTrackerThreshtap(

int *pnTrackerThreshtap
);
Parameters
pnTrackerThreshtap [out]
Pointer to an int variable that receives the tap threshold value.

Value : 0x00 ~ 0xFF    
0x40
4 g
0x80
8 g
0xC0
12 g
0xFF
16 g
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	GetTrackerAngle
  This function gets angle value of tracker information.

Syntax

int  GetTrackerAngle(

int *pnTrackerAngle
);
Parameters
pnTrackerAngle [out]
Pointer to an int variable that receives the angle value.

Value : 0x00 ~ 0xFF

0x80
30° 
0xA5
40° 
0xC4
50° 
0xDE
60° 
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	GetSMSStatus
  This function gets SMS status is enable or disable.

Syntax

int  GetSMSStatus(

int *pnSMS_Enable
);
Parameters
pnSMS_Enable [out]
Pointer to an int variable that receives the Tracker status.

Value
Meaning
0

Disable
1

Enable
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	GetSMSCodingType
  This function gets SMS coding type.

Syntax

int  GetSMSCodingType(

int *pnType
);
Parameters
pnType [out]
Pointer to an int variable that receives the coding type.

Value
Meaning
0

ASCII Code
1

Unicode
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	GetSMSContent_ASCII
  This function gets SMS content (Multibyte Character Set).

Syntax

int  GetSMSContent_ASCII(

char *pszSMS, 

int nLen
);
int  GetSMSContent_ASCII_W(

wchar_t *pszSMS, 

int nLen
);
Parameters
pszSMS [out]
Pointer to the buffer that will receive the SMS content.
  nLen [in]
    Specifies the maximum number of characters to copy to the buffer.
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Return -10 => Buffer too small.
Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	GetSMSContent_Unicode
  This function gets SMS content (Unicode).

Syntax

int  GetSMSContent_Unicode(

wchar_t *pszSMS, 

int nLen
);
Parameters
pszSMS [out]
Pointer to the buffer that will receive the SMS content.
  nLen [in]
    Specifies the maximum number of characters to copy to the buffer.
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	Set3GAPN
  This function sets APN.

Syntax

int  Set3GAPN(

char *pszAPN, 

int nLen
);
int  Set3GAPN_W(

wchar_t *pszAPN, 

int nLen
);
Parameters
pszAPN [in]
Pointer to a null-terminated string to be used as the new APN.
nLen [in]
The number of characters in string, excluding the terminal NULL.
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None



	Set3GDNS
  This function sets DNS.

Syntax

int  Set3GDNS(

int nIndex, 

char *pszDNS, 

int nLen
);
int  Set3GDNS_W(

int nIndex, 

wchar_t *pszDNS, 

int nLen
);
Parameters
  nIndex [in]
An int variable that specify index of DNS.
  Index : 0 ~ 1

pszDNS [in]
Pointer to a null-terminated string to be used as the new DNS.
IP format “xxx.xxx.xxx.xxx”
nLen [in]
The number of characters in string, excluding the terminal NULL.
The valid values for this member are 0 through 15.
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None
Example

1. Set DNS 1 (index 0).

Set3GDNS(0, “255.255.255.255”, 15);



	SetServerIP
  This function sets Server IP.

Syntax

int  SetServerIP(

char *pszIP, 

int nLen
);
int  SetServerIP_W(

wchar_t *pszIP, 

int nLen
);
Parameters
pszIP [in]
Pointer to a null-terminated string to be used as the new Server IP.
IP format “xxx.xxx.xxx.xxx”
nLen [in]
The number of characters in string, excluding the terminal NULL.
The valid values for this member are 0 through 15.
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None
Example

1. Set Server IP.

SetServerIP(“255.255.255.255”, 15);



	SetServerPort
  This function sets server port.

Syntax

int  SetServerPort(

int nPort
);
Parameters
nPort [in]
  The server port. The valid values for this member are 0 through 65535.
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
  None


	SetMachineName
  This function sets machine name.

Syntax

int  SetMachineName(

char *pszMachineName, 

int nLen
);
int  SetMachineName_W(

wchar_t *pszMachineName, 

int nLen
);
Parameters
pszMachineName [in]
Pointer to a null-terminated string to be used as the new machine name.
nLen [in]
The number of characters in string, excluding the terminal NULL.
The valid values for this member are 0 through 15.
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	SetPhoneNumber
  This function sets phone number.

Syntax

int  SetPhoneNumber(

int nIndex, 

Phone_Number_t *pPhone_Number, 

int nCount
);
int  SetPhoneNumber_W(

int nIndex, 

Phone_Number_W_t *pPhone_Number, 

int nCount
);
Parameters
nIndex [in]
An int variable that specify index of phone number.
Index : 0x00 ~ 0x09

pPhone_Number [in]
An array of Phone_Number_t values that contain the phone number.
nCount [in]
Integer that specifies the number of elements in the pPhone_Number array.
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None
Example

1. Write one phone number (index 1).

Phone_Number_t Phone_Number[1];
SetPhoneNumber(1, Phone_Number, 1);
2. Write three phone number (from index 2 to 4).

Phone_Number_t Phone_Number[3];
SetPhoneNumber(2, Phone_Number, 3);



	SetTrackerControl
  This function sets Tracker is enable or disable.

Syntax

int  SetTrackerControl(

int nTrackerEnable
);
Parameters
nTrackerEnable [in]
Value
Meaning
0

Disable
1

Enable
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
  None


	SetTrackerMode
  This function sets Tracker Mode.

Syntax

int  SetTrackerMode(

int nTrackerMode
);
Parameters
nTrackerMode [in]
Value
Meaning
0

Normal Mode
1

Continue Mode
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
  None


	SetTrackerDelayTime
  This function sets Tracker Delay Time.

Syntax

int  SetTrackerDelayTime(

int nTime
);
Parameters
nTime [in]
  The Tracker Delay Time.
The valid values for this member are 0 through 65535 seconds.
60
1 minute
120
2 minutes
180
3 minutes
300
5 minutes
420
7 minutes
600
10 minutes
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
  None


	SetTrackerResponseTime
  This function sets tracker response time.

Syntax

int  SetTrackerResponseTime(

int nTime
);
Parameters
nTime [in]
  The response time. 
The valid values for this member are 0 through 65535 seconds.
60
1 minute
600
10 minutes
3600
60 minutes
10800
180 minutes
21600
360 minutes
43200
720 minutes
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
  None


	SetTrackerThreshtap
  This function sets tap threshold value of tracker information.

Syntax

int  SetTrackerThreshtap(

int nThreshtap
);
Parameters
nThreshtap [in]
  The tap threshold value. The valid values for this member are 0x00 through 0xFF.
0x40
4 g
0x80
8 g
0xC0
12 g
0xFF
16 g
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
  None


	SetTrackerAngle
  This function sets angle of tracker information.

Syntax

int  SetTrackerAngle(

int nTrackerAngle
);
Parameters
nTrackerAngle [in]
  The angle value. The valid values for this member are 0x00 through 0xFF.
0x80
30° 
0xA5
40° 
0xC4
50° 
0xDE
60° 
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
  None


	SetSMSControl
  This function sets SMS is enable or disable.

Syntax

int  SetSMSControl(

int nSMS_Enable
);
Parameters
nSMS_Enable [in]
Value
Meaning
0

Disable
1

Enable
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
  None


	SetSMSCodingType
  This function sets SMS Coding Type.

Syntax

int  SetSMSCodingType(

int nSMSCodingType
);
Parameters
nSMSCodingType [in]
Value
Meaning
0

ASCII
1

Unicode
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
  None


	SetSMSContent_ASCII
  This function sets SMS content (Multibyte Character Set).

Syntax

int  SetSMSContent_ASCII(

char *pszSMS, 

int nLen
);
int  SetSMSContent_ASCII_W(

wchar_t *pszSMS, 

int nLen
);
Parameters
pszSMS [in]
Pointer to a null-terminated string to be used as the new SMS.
nLen [in]
The number of characters in string, excluding the terminal NULL.
The valid values for this member are 0 through 128.
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


	SetSMSContent_Unicode
  This function sets SMS content (Unicode).

Syntax

int  SetSMSContent_Unicode(

wchar_t *pszSMS, 

int nLen
);
Parameters
pszSMS [in]
Pointer to a null-terminated string to be used as the new SMS.
nLen [in]
The number of characters in string, excluding the terminal NULL.
The valid values for this member are 0 through 64.
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Return -13 => Parameter can’t be a NULL pointer.

Remarks
  None


6. G-sensor REGISTER MAP
	Address
	Name
	Type
	Reset Value
	Description

	Hex
	Dec
	
	
	
	

	0x00 
	0 
	DEVID 
	R 
	11100101
	Device ID

	0x01 to 0x1C
	1 to 28
	Reserved 
	
	
	Reserved; do not access

	0x1D 
	29 
	THRESH_TAP 
	R/W
	00000000 
	Tap threshold

	0x1E 
	30 
	OFSX 
	R/W
	00000000 
	X-axis offset

	0x1F 
	31 
	OFSY 
	R/W
	00000000 
	Y-axis offset

	0x20 
	32 
	OFSZ 
	R/W
	00000000 
	Z-axis offset

	0x21 
	33 
	DUR 
	R/W
	00000000 
	Tap duration

	0x22 
	34 
	Latent 
	R/W
	00000000 
	Tap latency

	0x23 
	35 
	Window 
	R/W
	00000000 
	Tap window

	0x24 
	36 
	THRESH_ACT 
	R/W
	00000000 
	Activity threshold

	0x25 
	37 
	THRESH_INACT 
	R/W
	00000000 
	Inactivity threshold

	0x26 
	38 
	TIME_INACT 
	R/W
	00000000 
	Inactivity time

	0x27 
	39 
	ACT_INACT_CTL 
	R/W
	00000000 
	Axis enable control for activity and inactivity detection

	0x28 
	40 
	THRESH_FF 
	R/W
	00000000 
	Free-fall threshold

	0x29 
	41 
	TIME_FF 
	R/W
	00000000 
	Free-fall time

	0x2A 
	42 
	TAP_AXES 
	R/W
	00000000 
	Axis control for single tap/double tap

	0x2B 
	43 
	ACT_TAP_STATUS
	R 
	00000000 
	Source of single tap/double tap

	0x2C 
	44 
	BW_RATE 
	R/W
	00001010 
	Data rate and power mode control

	0x2D 
	45 
	POWER_CTL 
	R/W
	00000000 
	Power-saving features control

	0x2E 
	46 
	INT_ENABLE 
	R/W
	00000000 
	Interrupt enable control

	0x2F 
	47 
	INT_MAP 
	R/W
	00000000 
	Interrupt mapping control

	0x30 
	48 
	INT_SOURCE 
	R 
	00000010 
	Source of interrupts

	0x31 
	49 
	DATA_FORMAT 
	R/W
	00000000 
	Data format control

	0x32 
	50 
	DATAX0 
	R 
	00000000 
	X-Axis Data 0

	0x33 
	51 
	DATAX1 
	R 
	00000000 
	X-Axis Data 1

	0x34 
	52 
	DATAY0 
	R 
	00000000 
	Y-Axis Data 0

	0x35 
	53 
	DATAY1 
	R 
	00000000 
	Y-Axis Data 1

	0x36 
	54 
	DATAZ0 
	R 
	00000000 
	Z-Axis Data 0

	0x37 
	55 
	DATAZ1 
	R 
	00000000 
	Z-Axis Data 1

	0x38 
	56 
	FIFO_CTL 
	R/W
	00000000 
	FIFO control

	0x39 
	57 
	FIFO_STATUS 
	R 
	00000000 
	FIFO status


7. G-sensor register definitions
Register 0x00—DEVID (Read Only) 
	D7 
	D6 
	D5 
	D4 
	D3 
	D2 
	D1 
	D0

	1 
	1 
	1 
	0 
	0 
	1 
	0 
	1


The DEVID register holds a fixed device ID code of 0xE5 (345 octal).
Register 0x1D—THRESH_TAP (Read/Write)
The THRESH_TAP register is eight bits and holds the threshold value for tap interrupts. The data format is unsigned, therefore, the magnitude of the tap event is compared with the value in THRESH_TAP for normal tap detection. The scale factor is 62.5 mg/LSB (that is, 0xFF = 16 g). A value of 0 may result in undesirable behavior if single tap/double tap interrupts are enabled.

Register 0x1E, Register 0x1F, Register 0x20—OFSX, OFSY, OFSZ (Read/Write)
The OFSX, OFSY, and OFSZ registers are each eight bits and offer user-set offset adjustments in twos complement format with a scale factor of 15.6 mg/LSB (that is, 0x7F = 2 g). The value stored in the offset registers is automatically added to the acceleration data, and the resulting value is stored in the output data registers. For additional information regarding offset calibration and the use of the offset registers, refer to the Offset Calibration section.

Register 0x21—DUR (Read/Write)
The DUR register is eight bits and contains an unsigned time value representing the maximum time that an event must be above the THRESH_TAP threshold to qualify as a tap event. The scale factor is 625 μs/LSB. A value of 0 disables the single tap/ double tap functions.

Register 0x22—Latent (Read/Write)
The latent register is eight bits and contains an unsigned time value representing the wait time from the detection of a tap event to the start of the time window (defined by the window register) during which a possible second tap event can be detected. The scale factor is 1.25 ms/LSB. A value of 0 disables the double tap function.

Register 0x23—Window (Read/Write)
The window register is eight bits and contains an unsigned time value representing the amount of time after the expiration of the latency time (determined by the latent register) during which a second valid tap can begin. The scale factor is 1.25 ms/LSB. A value of 0 disables the double tap function.

Register 0x24—THRESH_ACT (Read/Write)
The THRESH_ACT register is eight bits and holds the threshold value for detecting activity. The data format is unsigned, so the magnitude of the activity event is compared with the value in the THRESH_ACT register. The scale factor is 62.5 mg/LSB. A value of 0 may result in undesirable behavior if the activity interrupt is enabled.

Register 0x25—THRESH_INACT (Read/Write)
The THRESH_INACT register is eight bits and holds the threshold value for detecting inactivity. The data format is unsigned, so the magnitude of the inactivity event is compared with the value in the THRESH_INACT register. The scale factor is 62.5 mg/LSB. A value of 0 may result in undesirable behavior if the inactivity interrupt is enabled.

Register 0x26—TIME_INACT (Read/Write)
The TIME_INACT register is eight bits and contains an unsigned time value representing the amount of time that acceleration must be less than the value in the THRESH_INACT register for inactivity to be declared. The scale factor is 1 sec/LSB. Unlike the other interrupt functions, which use unfiltered data (see the Threshold section), the inactivity function uses filtered output data. At least one output sample must be generated for the inactivity interrupt to be triggered. This results in the function appearing unresponsive if the TIME_INACT register is set to a value less than the time constant of the output data rate. A value of 0 results in an interrupt when the output data is less than the value in the THRESH_INACT register.

Register 0x27—ACT_INACT_CTL (Read/Write) 
	D7 
	D6 
	D5 
	D4

	ACT ac/dc 
	ACT_X enable 
	ACT_Y enable 
	ACT_Z enable  

	D3 
	D2 
	D1 
	D0

	INACT ac/dc 
	INACT_X enable 
	INACT_Y enable 
	INACT_Z enable  


ACT AC/DC and INACT AC/DC Bits
A setting of 0 selects dc-coupled operation, and a setting of 1 enables ac-coupled operation. In dc-coupled operation, the current acceleration magnitude is compared directly with THRESH_ACT and THRESH_INACT to determine whether activity or inactivity is detected.

In ac-coupled operation for activity detection, the acceleration value at the start of activity detection is taken as a reference value. New samples of acceleration are then compared to this reference value, and if the magnitude of the difference exceeds the THRESH_ACT value, the device triggers an activity interrupt.

Similarly, in ac-coupled operation for inactivity detection, a reference value is used for comparison and is updated whenever the device exceeds the inactivity threshold. After the reference value is selected, the device compares the magnitude of the difference between the reference value and the current acceleration with THRESH_INACT. If the difference is less than the value in THRESH_INACT for the time in TIME_INACT, the device is considered inactive and the inactivity interrupt is triggered.

ACT_x Enable Bits and INACT_x Enable Bits
A setting of 1 enables x-, y-, or z-axis participation in detecting activity or inactivity. A setting of 0 excludes the selected axis from participation. If all axes are excluded, the function is disabled. For activity detection, all participating axes are logically OR’ed, causing the activity function to trigger when any of the partici-pating axes exceeds the threshold. For inactivity detection, all participating axes are logically AND’ed, causing the inactivity function to trigger only if all participating axes are below the threshold for the specified time.

Register 0x28—THRESH_FF (Read/Write)
The THRESH_FF register is eight bits and holds the threshold value, in unsigned format, for free-fall detection. The acceleration on all axes is compared with the value in THRESH_FF to determine if a free-fall event occurred. The scale factor is 62.5 mg/LSB. Note that a value of 0 mg may result in undesirable behavior if the free-fall interrupt is enabled. Values between 300 mg and 600 mg (0x05 to 0x09) are recommended.

Register 0x29—TIME_FF (Read/Write)
The TIME_FF register is eight bits and stores an unsigned time value representing the minimum time that the value of all axes must be less than THRESH_FF to generate a free-fall interrupt. The scale factor is 5 ms/LSB. A value of 0 may result in undesirable behavior if the free-fall interrupt is enabled. Values between 100 ms and 350 ms (0x14 to 0x46) are recommended.

Register 0x2A—TAP_AXES (Read/Write) 
	D7 
	D6 
	D5 
	D4 
	D3 
	D2 
	D1 
	D0

	0 
	0 
	0 
	0 
	Suppress 
	TAP_X enable 
	TAP_Y enable 
	TAP_Z enable  


Suppress Bit
Setting the suppress bit suppresses double tap detection if acceleration greater than the value in THRESH_TAP is present between taps. See the Tap Detection section for more details.

TAP_x Enable Bits
A setting of 1 in the TAP_X enable, TAP_Y enable, or TAP_Z enable bit enables x-, y-, or z-axis participation in tap detection. A setting of 0 excludes the selected axis from participation in tap detection.

Register 0x2B—ACT_TAP_STATUS (Read Only) 
	D7 
	D6 
	D5 
	D4 
	D3 
	D2 
	D1 
	D0 

	0 
	ACT_X source 
	ACT_Y source 
	ACT_Z source 
	Asleep 
	TAP_X source 
	TAP_Y source 
	TAP_Z source 


ACT_x Source and TAP_x Source Bits
These bits indicate the first axis involved in a tap or activity event. A setting of 1 corresponds to involvement in the event, and a setting of 0 corresponds to no involvement. When new data is available, these bits are not cleared but are overwritten by the new data. The ACT_TAP_STATUS register should be read before clearing the interrupt. Disabling an axis from participation clears the corresponding source bit when the next activity or single tap/double tap event occurs.

Asleep Bit
A setting of 1 in the asleep bit indicates that the part is asleep, and a setting of 0 indicates that the part is not asleep. This bit toggles only if the device is configured for auto sleep. See the AUTO_SLEEP Bit section for more information on autosleep mode.

Register 0x2C—BW_RATE (Read/Write) 
	D7 
	D6 
	D5 
	D4 
	D3 
	D2 
	D1 
	D0

	0 
	0 
	0 
	LOW_POWER 
	Rate 


LOW_POWER Bit
A setting of 0 in the LOW_POWER bit selects normal operation, and a setting of 1 selects reduced power operation, which has somewhat higher noise (see the Power Modes section for details).

Rate Bits
These bits select the device bandwidth and output data rate (see Table 7 and Table 8 for details). The default value is 0x0A, which translates to a 100 Hz output data rate. An output data rate should be selected that is appropriate for the communication protocol and frequency selected. Selecting too high of an output data rate with a low communication speed results in samples being discarded.

Register 0x2D—POWER_CTL (Read/Write) 
	D7 
	D6 
	D5 
	D4 
	D3 
	D2 
	D1 
	D0

	0 
	0 
	Link 
	AUTO_SLEEP 
	Measure 
	Sleep 
	Wakeup


Link Bit
A setting of 1 in the link bit with both the activity and inactivity functions enabled delays the start of the activity function until inactivity is detected. After activity is detected, inactivity detection begins, preventing the detection of activity. This bit serially links the activity and inactivity functions. When this bit is set to 0, the inactivity and activity functions are concurrent. Additional information can be found in the Link Mode section.

When clearing the link bit, it is recommended that the part be placed into standby mode and then set back to measurement mode with a subsequent write. This is done to ensure that the device is properly biased if sleep mode is manually disabled; otherwise, the first few samples of data after the link bit is cleared may have additional noise, especially if the device was asleep when the bit was cleared.

AUTO_SLEEP Bit
If the link bit is set, a setting of 1 in the AUTO_SLEEP bit enables the auto-sleep functionality. In this mode, the ADXL345 auto-matically switches to sleep mode if the inactivity function is enabled and inactivity is detected (that is, when acceleration is below the THRESH_INACT value for at least the time indicated by TIME_INACT). If activity is also enabled, the ADXL345 automatically wakes up from sleep after detecting activity and returns to operation at the output data rate set in the BW_RATE register. A setting of 0 in the AUTO_SLEEP bit disables automatic switching to sleep mode. See the description of the Sleep Bit in this section for more information on sleep mode.

If the link bit is not set, the AUTO_SLEEP feature is disabled and setting the AUTO_SLEEP bit does not have an impact on device operation. Refer to the Link Bit section or the Link Mode section for more information on utilization of the link feature.

When clearing the AUTO_SLEEP bit, it is recommended that the part be placed into standby mode and then set back to measure-ment mode with a subsequent write. This is done to ensure that the device is properly biased if sleep mode is manually disabled; otherwise, the first few samples of data after the AUTO_SLEEP bit is cleared may have additional noise, especially if the device was asleep when the bit was cleared.

Measure Bit
A setting of 0 in the measure bit places the part into standby mode, and a setting of 1 places the part into measurement mode. The ADXL345 powers up in standby mode with minimum power consumption.

Sleep Bit
A setting of 0 in the sleep bit puts the part into the normal mode of operation, and a setting of 1 places the part into sleep mode. Sleep mode suppresses DATA_READY, stops transmission of data to FIFO, and switches the sampling rate to one specified by the wakeup bits. In sleep mode, only the activity function can be used. When the DATA_READY interrupt is suppressed, the output data registers (Register 0x32 to Register 0x37) are still updated at the sampling rate set by the wakeup bits (D1:D0).

When clearing the sleep bit, it is recommended that the part be placed into standby mode and then set back to measurement mode with a subsequent write. This is done to ensure that the device is properly biased if sleep mode is manually disabled; otherwise, the first few samples of data after the sleep bit is cleared may have additional noise, especially if the device was asleep when the bit was cleared.

Wakeup Bits
These bits control the frequency of readings in sleep mode as described in Table 20.

Table 20. Frequency of Readings in Sleep Mode 
	Setting 
	Frequency (Hz)

	D1 
	D0 
	

	0 
	0 
	8

	0 
	1 
	4

	1 
	0 
	2

	1 
	1 
	1


Register 0x2E—INT_ENABLE (Read/Write) 
	D7 
	D6 
	D5 
	D4  

	DATA_READY 
	SINGLE_TAP 
	DOUBLE_TAP 
	Activity  

	D3 
	D2 
	D1 
	D0  

	Inactivity 
	FREE_FALL 
	Watermark 
	Overrun  


Setting bits in this register to a value of 1 enables their respective functions to generate interrupts, whereas a value of 0 prevents the functions from generating interrupts. The DATA_READY, watermark, and overrun bits enable only the interrupt output; the functions are always enabled. It is recommended that interrupts be configured before enabling their outputs.

Register 0x2F—INT_MAP (R/) W
	D7 
	D6 
	D5 
	D4 

	DATA_READY 
	SINGLE_TAP 
	DOUBLE_TAP 
	Activity 

	D3 
	D2 
	D1 
	D0 

	Inactivity 
	FREE_FALL 
	Watermark 
	Overrun 


Any bits set to 0 in this register send their respective interrupts to the INT1 pin, whereas bits set to 1 send their respective interrupts to the INT2 pin. All selected interrupts for a given pin are OR’ed.

Register 0x30—INT_SOURCE (Read Only) 
	D7 
	D6 
	D5 
	D4 

	DATA_READY 
	SINGLE_TAP 
	DOUBLE_TAP 
	Activity 

	D3 
	D2 
	D1 
	D0 

	Inactivity 
	FREE_FALL 
	Watermark 
	Overrun 


Bits set to 1 in this register indicate that their respective functions have triggered an event, whereas a value of 0 indicates that the corresponding event has not occurred. The DATA_READY, watermark, and overrun bits are always set if the corresponding events occur, regardless of the INT_ENABLE register settings, and are cleared by reading data from the DATAX, DATAY, and DATAZ registers. The DATA_READY and watermark bits may require multiple reads, as indicated in the FIFO mode descriptions in the FIFO section. Other bits, and the corresponding interrupts, are cleared by reading the INT_SOURCE register.

Register 0x31—DATA_FORMAT (Read/Write) 
	D7 
	D6 
	D5 
	D4 
	D3 
	D2 
	D1 
	D0 

	SELF_TEST 
	SPI 
	INT_INVERT 
	0 
	FULL_RES 
	Justify 
	Range 


The DATA_FORMAT register controls the presentation of data to Register 0x32 through Register 0x37. All data, except that for the ±16 g range, must be clipped to avoid rollover.

SELF_TEST Bit
A setting of 1 in the SELF_TEST bit applies a self-test force to the sensor, causing a shift in the output data. A value of 0 disables the self-test force.

SPI Bit
A value of 1 in the SPI bit sets the device to 3-wire SPI mode, and a value of 0 sets the device to 4-wire SPI mode.

INT_INVERT Bit
A value of 0 in the INT_INVERT bit sets the interrupts to active high, and a value of 1 sets the interrupts to active low.

FULL_RES Bit
When this bit is set to a value of 1, the device is in full resolution mode, where the output resolution increases with the g range set by the range bits to maintain a 4 mg/LSB scale factor. When the FULL_RES bit is set to 0, the device is in 10-bit mode, and the range bits determine the maximum g range and scale factor.

Justify Bit
A setting of 1 in the justify bit selects left-justified (MSB) mode, and a setting of 0 selects right-justified mode with sign extension.

Range Bits
These bits set the g range as described in Table 21.

Table 21. g Range Setting 
	Setting 
	g Range

	D1 
	D0 
	

	0 
	0 
	±2 g 

	0 
	1 
	±4 g 

	1 
	0 
	±8 g 

	1 
	1 
	±16 g 


Register 0x32 to Register 0x37—DATAX0, DATAX1, DATAY0, DATAY1, DATAZ0, DATAZ1 (Read Only)
These six bytes (Register 0x32 to Register 0x37) are eight bits each and hold the output data for each axis. Register 0x32 and Register 0x33 hold the output data for the x-axis, Register 0x34 and Register 0x35 hold the output data for the y-axis, and Register 0x36 and Register 0x37 hold the output data for the z-axis. The output data is twos complement, with DATAx0 as the least significant byte and DATAx1 as the most significant byte, where x represent X, Y, or Z. The DATA_FORMAT register (Address 0x31) controls the format of the data. It is recommended that a multiple-byte read of all registers be performed to prevent a change in data between reads of sequential registers.

Register 0x38—FIFO_CTL (Read/Write) 
	D7 
	D6 
	D5 
	D4 
	D3 
	D2 
	D1 
	D0 

	FIFO_MODE 
	Trigger 
	Samples 


FIFO_MODE Bits 
These bits set the FIFO mode, as described in Table 22.
Table 22. FIFO Modes 
	Setting 
	Setting 

	D7 
	D6 
	Mode 
	Function 

	0 
	0 
	Bypass 
	FIFO is bypassed. 

	0 
	1 
	FIFO 
	FIFO collects up to 32 values and then stops collecting data, collecting new data only when FIFO is not full.

	1 
	0 
	Stream 
	FIFO holds the last 32 data values. When FIFO is full, the oldest data is overwritten with newer data.

	1 
	1 
	Trigger 
	When triggered by the trigger bit, FIFO holds the last data samples before the trigger event and then continues to collect data until full. New data is collected only when FIFO is not full.


Trigger Bit
A value of 0 in the trigger bit links the trigger event of trigger mode to INT1, and a value of 1 links the trigger event to INT2.

Samples Bits
The function of these bits depends on the FIFO mode selected (see Table 23). Entering a value of 0 in the samples bits immediately sets the watermark status bit in the INT_SOURCE register, regardless of which FIFO mode is selected. Undesirable operation may occur if a value of 0 is used for the samples bits when trigger mode is used.

Table 23. Samples Bits Functions 
	FIFO Mode 
	Samples Bits Function 

	Bypass 
	None.

	FIFO 
	Specifies how many FIFO entries are needed to trigger a watermark interrupt.

	Stream 
	Specifies how many FIFO entries are needed to trigger a watermark interrupt.

	Trigger 
	Specifies how many FIFO samples are retained in the FIFO buffer before a trigger event.


0x39—FIFO_STATUS (Read Only) 
	D7 
	D6 
	D5 
	D4 
	D3 
	D2 
	D1 
	D0 

	FIFO_TRIG 
	0 
	Entries 


FIFO_TRIG Bit
A 1 in the FIFO_TRIG bit corresponds to a trigger event occurring, and a 0 means that a FIFO trigger event has not occurred.

Entries Bits
These bits report how many data values are stored in FIFO. Access to collect the data from FIFO is provided through the DATAX, DATAY, and DATAZ registers. FIFO reads must be done in burst or multiple-byte mode because each FIFO level is cleared after any read (single- or multiple-byte) of FIFO. FIFO stores a maximum of 32 entries, which equates to a maximum of 33 entries available at any given time because an additional entry is available at the output filter of the device.

