SJA1000 CAN Bus API v1.16
- 10/18/2017 -NEXCOM

1. Introduction
The SJA1000 CAN Bus API is used for VTC1010, VTC6210, VTC7200, VTC7210, VTC7220, VTC7230, VTC7240.
2. Using SJA1000 CAN Bus API
The redistributable files are provided in the _LIB directory (SJA1000_CAN.dll) and should be included in the installation package for your application.
The files “SJA1000_CAN.dll, WinIo32.dll and WinIo32.sys” must be placed in the same directory as your application's executable file.
The WinIo64.sys file must be replaced with a version that is signed with a public code signing certificate (see below).
Driver Signing Requirements on 64-bit Systems :

64-bit versions of Windows only load device drivers that are signed by a code signing certificate issued by a public CA such as Verisign, Thawte, etc. WinIo64.sys must not be deployed on production machines unless a code signing certificate is obtained and used to sign this file. The bundled copy of WinIo64.sys is signed with a self-signed certificate and can only be used on development/test machines with Windows running in a special "test" mode. In order to use the bundled version of WinIo64.sys, you need to take the following steps:
￭Open an elevated command window by right-clicking the icon and clicking "Run as Administrator".

￭Type the following command to enable test-signing:
bcdedit.exe /set TESTSIGNING ON
Reboot the machine
3. Sample

#include "SJA1000_CAN.h"
#pragma comment(lib, "SJA1000_CAN.lib")
int _tmain(int argc, _TCHAR* argv[])

{
 Library_Initial();
 CAN_Initial(CAN_BAUD_62500, 0, 0); // Initial CAN BUS
 CAN_Run();
 can_msg_t msg;

 msg.ide = 0;

 msg.id = 0x01;

 msg.dlc = 1;

 msg.data[0] = 0xFF;
 CAN_Transmission(&msg);
 CAN_Receive(&msg);
 CAN_Stop();
 Library_Release();

return 0;

}
4. Structures
	can_msg_t
 This structure is used to store a can message.
Syntax

typedef struct can_msg

{

unsigned short ide; // Standard/extended msg

unsigned int id; // 11 or 29 bit id

unsigned short dlc; // Size of data

unsigned char data[8]; // Message pay load

unsigned short rtr; // RTR message
} can_msg_t;
Members
 Ide (Identifier Extension)
Value
Description
0

Standard Frame Format
1

Extended Frame Format
 Id (Identifier)
In Standard Frame Format the identifier consists of 11 bits (ID.10 to ID.0) and in Extended Frame Format messages the identifier consists of 29 bits (ID.28 to ID.0). ID.28 is the most significant bit, which is transmitted first on the bus during the arbitration process.

The identifier acts as the message’s name, used in a receiver for acceptance filtering, and also determines the bus access priority during the arbitration process.

The lower the binary value of the identifier the higher the priority. This is due to the larger number of leading dominant bits during arbitration.
 dlc (Data Length Code)
The number of bytes in the data field of a message is coded by the data length code. At the start of a remote frame transmission the data length code is not considered due to the RTR being logic 1 (remote). This forces the

number of transmitted/received data bytes to be 0. Nevertheless, the data length code must be specified correctly to avoid bus errors, if two CAN controllers start a remote frame transmission with the same identifier

simultaneously. The range of the data byte count is 0 to 8 bytes.
 data
The number of transferred data bytes is defined by the data length code.
 rtr
Remote Transmission Request
Remarks
None

	can_rx_single_standard_filter
 This structure is used to store single standard filter setting.
Syntax

typedef struct can_rx_single_standard_filter

{

unsigned int acr_id;

// ID (11bit)

unsigned int acr_rtr;

// RTR (1bit)

unsigned int acr_data1;

// Data1 (8bit)

unsigned int acr_data2;

// Data2 (8bit)

unsigned int amr_id;

// ID (11bit)

unsigned int amr_rtr;

// RTR (1bit)

unsigned int amr_data1;
// Data1 (8bit)

unsigned int amr_data2;
// Data2 (8bit)
} can_rx_single_standard_filter_t;
Members
 acr_id
 Acceptance Code Registers filter (11 bit message id)
 acr_rtr
 Acceptance Code Registers filter (RTR message)
 acr_data1
 Acceptance Code Registers filter data 1 filter (8 bit data)
 acr_data2
 Acceptance Code Registers filter data 2 filter (8 bit data)
 amr_id
 Acceptance Mask Registers filter (11 bit message id)
 amr_rtr
 Acceptance Mask Registers filter (RTR message)
 amr_data1
 Acceptance Mask Registers filter data 1 filter (8 bit data)
 amr_data2
 Acceptance Mask Registers filter data 2 filter (8 bit data)
Remarks
None

	can_rx_single_extended_filter_t
 This structure is used to store single extended filter setting.
Syntax

typedef struct can_rx_single_extended_filter

{

unsigned int acr_id;

// ID (29bit)

unsigned int acr_rtr;

// RTR (1bit)

unsigned int amr_id;

// ID (29bit)

unsigned int amr_rtr;

// RTR (1bit)
} can_rx_single_extended_filter_t;
Members
 acr_id
 Acceptance Code Registers filter (29 bit message id)
 acr_rtr
 Acceptance Code Registers filter (RTR message)
 amr_id
 Acceptance Mask Registers filter (29 bit message id)
 amr_rtr
 Acceptance Mask Registers filter (RTR message)
Remarks
None

	can_rx_dual_filter_t
 This structure is used to store dual filter setting.
Syntax

typedef struct can_rx_dual_filter

{

unsigned int acr_filter1_id;
// ID (11bit)

unsigned int acr_filter1_rtr;
// RTR (1bit)

unsigned int amr_filter1_id;
// ID (11bit)

unsigned int amr_filter1_rtr;
// RTR (1bit)

unsigned int acr_filter2_id;
// ID (11bit)

unsigned int acr_filter2_rtr;
// RTR (1bit)

unsigned int amr_filter2_id;
// ID (11bit)

unsigned int amr_filter2_rtr;
// RTR (1bit)

unsigned int acr_data1;
// Data1 (8bit)

unsigned int amr_data1;
// Data1 (8bit)
} can_rx_dual_filter_t;
Members
 acr_filter1_id
 Acceptance Code Registers filter 1 (11 bit message id)
 acr_filter1_rtr
 Acceptance Code Registers filter 1 (RTR message)
 amr_filter1_id
 Acceptance Mask Registers filter 1 (11 bit message id)
 amr_filter1_rtr
 Acceptance Mask Registers filter 1 (RTR message)
 acr_filter2_id
 Acceptance Code Registers filter 2 (11 bit message id)
 acr_filter2_rtr
 Acceptance Code Registers filter 2 (RTR message)
 amr_filter2_id
 Acceptance Mask Registers filter 2 (11 bit message id)
 amr_filter2_rtr
 Acceptance Mask Registers filter 2 (RTR message)
 acr_data1
 Acceptance Code Registers data 1 filter (8 bit data)
 amr_data1
 Acceptance Mask Registers data 1 filter (8 bit data)
Remarks
None

	can_error_t
 This structure is used to store can error status.
Syntax

typedef struct can_error

{

unsigned int Direction;

unsigned int error_stat;

unsigned int error_segment;

unsigned int error_warning_limit;

unsigned int rx_err_cnt;

unsigned int tx_err_cnt;

} can_error_t;
Members
 Direction
Value
Description
0

TX error occurred during transmission
1

RX error occurred during reception
 error_stat
Value
Description
0

bit error
1

form error
2
stuff error
3
other type of error
 error_segment
Value
Description
00011
start of frame
00010
ID bit 28 ~ ID bit 21 (29 bit ID),
ID bit 10 ~ ID bit 3 (11 bit ID)
00110
ID bit 20 ~ ID bit 18 (29 bit ID),
ID bit 2 ~ ID bit 0 (11 bit ID)
00100
bit SRTR
00101
bit IDE
00111
ID bit 17 ~ ID bit 13 (29 bit ID)
01111
ID bit 12 ~ ID bit 5 (29 bit ID)
01110
ID bit 4 ~ ID bit 0 (29 bit ID)
01100
bit RTR
01101
reserved bit 1
01001
reserved bit 0
01011
data length code
01010
data field
01000
CRC sequence
11000
CRC delimiter
11001
acknowledge slot
11011
acknowledge delimiter
11010
end of frame
10010
intermission
10001
active error flag
10110
passive error flag
10011
tolerate dominant bits
10111
error delimiter
11100
overload flag
 error_warning_limit
 The error warning limit, the default value is 0x96.
 rx_err_cnt (Rx error counter)
 The RX error counter reflects the current value of the receive error counter.
 tx_err_cnt (Tx error counter)
 The TX error counter reflects the current value of the transmit error counter.
Remarks
None

	can_status_t
 This structure is used to store can status.
Syntax

typedef struct can_status

{

unsigned short BS;
// Bus Status (1:bus-off 0:bus-on)

unsigned short ES;
// Error Status (1:error 0:ok)

unsigned short TS;
// Transmit Status (1:transmit 0:idle)

unsigned short RS;
// Receive Status (1:receive 0:idle)

unsigned short TCS;
// Transmission Complete Status (1:complete
 0:incomplete)

unsigned short TBS;
// Transmit Buffer Status (1:released 0:locked)

unsigned short DOS;
// Data Overrun Status (1:overrun 0:absent)

unsigned short RBS;
// Receive Buffer Status (1:full 0:empty)
} can_status_t;
Members
 BS (Bus Status)
Value
Description
0

bus-on, the CAN controller is involved in bus activities
1

bus-off, the CAN controller is not involved in bus activities
 ES (Error Status)
Value
Description
0

Ok, both error counters are below the warning limit
1

Error, at least one of the error counters has reached or exceeded the CPU warning limit defined by the Error Warning Limit (can_error_t.error_warning_limit)
 TS (Transmit Status)
Value
Description
0

Idle
1

Transmit, the CAN controller is transmitting a message
 RS (Receive Status)
Value
Description
0

Idle
1

Receive, the CAN controller is receiving a message
 TCS (Transmission Complete Status)
Value
Description
0

Incomplete, previously requested transmission is not yet completed
1

Complete, last requested transmission has been successfully completed
 TBS (Transmit Buffer Status)
Value
Description
0

Locked, the CPU cannot access the transmit buffer; a message is either waiting for transmission or is in the process of being transmitted
1

Released, the CPU may write a message into the transmit buffer
 DOS (Data Overrun Status)
Value
Description
0

Absent, no data overrun has occurred since the last clear data overrun command was given
1

Overrun, a message was lost because there was not enough space for that message in the RXFIFO
 RBS (Receive Buffer Status)
Value
Description
0

Empty, no message is available
1

Full, one or more complete messages are available in the RXFIFO
Remarks
None

5. Functionality
	CAN_Get_DLL_Version
 This function gets version of “SJA1000_CAN_Bus.dll”.

Syntax

void CAN_Get_DLL_Version(

int* nMajorVersion,

int* nMinorVersion
);
Parameters
nMajorVersion [out]
Pointer to an int variable that receives the “Major Version”.

nMinorVersion [out]
Pointer to an int variable that receives the “Minor Version”.

Return Values
None
Remarks
 The current version of “SJA1000_CAN_Bus.dll” is 1.14

	Library_Initial
 Load library “WinIo32.dll”, “WinIo32.sys” when system is 32bit Windows.

 If system is 64bit Windows then “WinIo64.dll”, “WinIo64.sys” will be loaded.
 This function must run as Administrator.

Syntax

int Library_Initial();
Parameters
None
Return Values
Return 1 => success

Return 0 => failed

 Make sure “WinIo32.dll”, “WinIo32.sys”, “WinIo64.dll”,“WinIo64.sys”
are existence.
Make sure this function is running as Administrator.

Remarks
 None

	Library_Release
 Free library “WinIo32.dll” and “WinIo32.sys”, or “WinIo64.dll” and “WinIo64.sys”.
Syntax

void Library_Release();
Parameters
None
Return Values
None
Remarks
 None

	CAN_Reset
 Reset the CAN device.
 Issuing this function causes the device to stop and reset. After the device has been
 reset, the device must be reconfigured (call CAN_Initial)
 and explicitly set to run (call CAN_Run).
Syntax

void CAN_Reset();
Parameters
None
Return Values
None
Remarks
 None

	CAN_Initial
 Set Baud Rate and basic settings.

This function must be called first before the other CAN functions.

Syntax

int CAN_Initial(

int nBaudRate,

int nListenMode,

int nSelfTestMode
);
Parameters
nBaudRate [in]
The Baud Rate can be one of the pre-defined recommended timings,
For example “CAN_BAUD_62500”, or user define, for example “666667”.

 nListenMode [in]
Value
Description
0

Normal mode
1

listen mode
in listen mode the CAN controller would give no acknowledge to the CAN-bus, even if a message is received successfully; the error counters are stopped at the current value
 nSelfTestMode [in]
Value
Description
0

an acknowledge is required for successful transmission
1

in self mode a full node test is possible without any other active node on the bus using the API “CAN_Transmission_SelfReception”; the CAN controller will perform a successful transmission, even if there is no acknowledge received
Return Values
Return 1 => Success

Return 0 => Failed, make sure function “Library_Initial” is called.
Remarks
 None

	CAN_Initial_Custom
 Set timing (user define baud rate) and basic settings.

This function must be called first before the other CAN functions.

Syntax

int CAN_Initial_Custom(

can_timing_t *timing,

int nListenMode,

int nSelfTestMode
);
Parameters
timing [in]
The user define baud rate,

Point to a structure “can_timing_t” that specified timing.
 nListenMode [in]
Value
Description
0

Normal mode
1

listen mode
in listen mode the CAN controller would give no acknowledge to the CAN-bus, even if a message is received successfully; the error counters are stopped at the current value
 nSelfTestMode [in]
Value
Description
0

an acknowledge is required for successful transmission
1

in self mode a full node test is possible without any other active node on the bus using the API “CAN_Transmission_SelfReception”; the CAN controller will perform a successful transmission, even if there is no acknowledge received
Return Values
Return 1 => Success

Return 0 => Failed, make sure function “Library_Initial” is called.

Remarks
 None

	CAN_Timing_Get
 This function is used to get current timing.
Syntax

int CAN_Timing_Get(

can_timing_t *timing
);
Parameters
timing [out]
 Point to a structure “can_timing_t” that receive the current timing.
Return Values
Return 1 => Success.

Return 0 => No message.

Remarks
 None

	CAN_Run
 Set the device to run. The device must be configured before using this command.
Syntax

int CAN_Run();
Parameters
None
Return Values
Return 1 => Success.

Return 0 => Failed, make sure function “Library_Initial” is called.
Remarks
 None

	CAN_Stop
 Stop all operations and the device. The device no longer transmits or receives packets.
Syntax

int CAN_Stop();
Parameters
None
Return Values
Return 1 => Success.

Return 0 => Failed, make sure function “Library_Initial” is called.
Remarks
 None

	CAN_Single_Standard_Filter
 Single filter configuration, receiving standard frame messages.
Syntax

void CAN_Single_Standard_Filter(

can_rx_single_standard_filter *filter
);
Parameters
filter [in]
 Point to a structure “can_rx_single_standard_filter”.
Return Values
 None
Remarks
 None

	CAN_Single_Extended_Filter
 Single filter configuration, receiving standard frame messages.
Syntax

void CAN_Single_Extended_Filter(

can_rx_single_extended_filter *filter
);
Parameters
filter [in]
 Point to a structure “can_rx_single_extended_filter”.
Return Values
 None
Remarks
 None

	CAN_Dual_Filter
 Dual filter configuration, receiving standard frame messages.
 (two filters, each with the length of 16 bit are active)
Syntax

void CAN_Dual_Filter(

can_rx_dual_filter_t *filter
);
Parameters
filter [in]
 Point to a structure “can_rx_dual_filter_t”.
Return Values
 None
Remarks
 None

	CAN_Transmission
 Copy message from user space and transmit.
Syntax

int CAN_Transmission(

can_msg_t *msg
);
Parameters
msg [in]
 Pointer to a structure “can_msg_t”.
Return Values
Return 1 => Success.

Return 0 => Failed, make sure function “Library_Initial” is called.
Return -1 => Can’t transmit (there is no connection with target device?)

Remarks
 None

	CAN_Transmission_Block
 Copy message from user space and transmit until transmit successful.
Syntax

int CAN_Transmission_Block(

can_msg_t *msg
);
Parameters
msg [in]
 Pointer to a structure “can_msg_t”.
Return Values
Always return 1;

Remarks
 None

	CAN_Transmission_SelfReception
 A message shall be transmitted and received simultaneously.
Syntax

int CAN_Transmission_SelfReception(

can_msg_t *msg
);
Parameters
msg [in]
 Pointer to a structure “can_msg_t”.
Return Values
Return 1 => Success.

Return 0 => Failed, make sure function “Library_Initial” is called.
Return -1 => Can’t transmit (there is no connection with target device?)

Remarks
 None

	CAN_Abort_Transmission
 Abort Transmission.
 If transmission is not already in progress, a pending transmission request is cancelled.
Syntax

int CAN_Abort_Transmission();
Parameters
None
Return Values
Return 1 => Success.

Return 0 => Failed, make sure function “Library_Initial” is called.

Remarks
 None

	CAN_Receive
 Read and copy CAN messages to user space.
Syntax

int CAN_Receive(

can_msg_t *msg
);
Parameters
msg [out]
 Point to a structure “can_msg_t”.
Return Values
Return 1 => Success.

Return 0 => No message.
Remarks
 None

	CAN_Receive_Block
 Read and copy CAN messages to user space until successful.
Syntax

int CAN_Receive_Block(

can_msg_t *msg
);
Parameters
msg [out]
 Point to a structure “can_msg_t”.
Return Values
Always return 1;

Remarks
 None

	CAN_Receive_Multiple
 Receive CAN messages with can_msg_t array.
Syntax

int CAN_Receive_Multiple(

can_msg_t *msg,

unsigned int nCount
);
Parameters
msg [out]
 Point to a structure “can_msg_t”.

nCount [in]
The count of “can_msg_t” array.
Return Values
Return number of can messages.

Return 0 => No message

Remarks
 None

	CAN_Release_Receive_Buffer
 Release one message in memory space of the RXFIFO.

Syntax

int CAN_Release_Receive_Buffer();
Parameters
None
Return Values
Return 1 => Success.

Return 0 => Failed, make sure function “Library_Initial” is called.

Remarks
 None

	CAN_Error_Stats_Get
 Get the error statistics of the CAN device.
Syntax

int CAN_Error_Stats_Get(

can_error_t *can_error
);
Parameters
can_error [out]
 Pointer to a structure “can_error_t”.

Return Values
Return 1 => Success.

Return 0 => Failed, make sure function “Library_Initial” is called.
Remarks
 None

	CAN_Stats_Get
 Get the statistics of the CAN device.
Syntax

int CAN_Stats_Get(

can_status_t *can_status
);
Parameters
can_status [out]
 Pointer to structure “can_status_t”
Return Values
Return 1 => Success.

Return 0 => Failed, make sure function “Library_Initial” is called.
Remarks
 None

	CAN_Clear_Data_Overrun
 Clear data overrun status.
Syntax

int CAN_Clear_Data_Overrun();
Parameters
None
Return Values
Return 1 => Success.

Return 0 => Failed, make sure function “Library_Initial” is called.

Remarks
 Data overrun status can be read by call function “CAN_Stats_Get”.

6. Single filter configuration (standard frame messages)

if a standard frame format message is

received, the complete identifier including the RTR bit and

the first two data bytes are used for acceptance filtering.

Messages may also be accepted if there are no data bytes

existing due to a set RTR bit or if there is none or only one

data byte because of the corresponding data length code.

For a successful reception of a message, all single bit

comparisons have to signal acceptance.

Note, that the 4 least significant bits of AMR1 and ACR1

are not used. In order to be compatible with future products

these bits should be programmed to be ‘don’t care’ by

setting AMR1.3, AMR1.2, AMR1.1 and AMR1.0 to logic 1.
[image: image1.png]
7. Single filter configuration (extended frame messages)
if an extended frame format message is

received, the complete identifier including the RTR bit is

used for acceptance filtering.

For a successful reception of a message, all single bit

comparisons have to signal acceptance.
It should be noted that the 2 least significant bits of AMR3

and ACR3 are not used. In order to be compatible with

future products these bits should be programmed to be

‘don’t care’ by setting AMR3.1 and AMR3.0 to logic 1.
[image: image2.png]
8. Dual filter configuration (standard frame messages)

if a standard frame message is received,

the two defined filters are looking different. The first filter

compares the complete standard identifier including the

RTR bit and the first data byte of the message. The second

filter just compares the complete standard identifier

including the RTR bit.
For a successful reception of a message, all single bit

comparisons of at least one complete filter have to signal

acceptance. In case of a set RTR bit or a data length code

of logic 0 no data byte is existing. Nevertheless a message

may pass filter 1, if the first part up to the RTR bit signals

acceptance.

If no data byte filtering is required for filter 1, the four least

significant bits of AMR1 and AMR3 have to be set to

logic 1 (don’t care). Then both filters are working

identically using the standard identifier range including the

RTR bit.
[image: image3.png]
