
© 2011 Cypress Semiconductor

Cypress CyUsb.sys
Programmer's Reference

Cypress CyUsb.sys Programmer's Reference2

© 2011 Cypress Semiconductor

Table of Contents

Foreword 0

Part I Driver Overview 4

Part II Features Not Supported 4

Part III Modifying CyUSB.INF 5

Part IV Matching Devices to the Driver 10

... 101 Windows 2000

... 142 Windows XP

... 183 Windows Vista and 7

Part V Reinstalling the Driver 23

Part VI The IOCTL Interface 23

... 231 Getting a Handle to the Driver

... 252 IOCTL_ADAPT_ABORT_PIPE

... 263 IOCTL_ADAPT_CYCLE_PORT

... 264 IOCTL_ADAPT_GET_ADDRESS

... 265 IOCTL_ADAPT_GET_ALT_INTERFACE_SETTING

... 276 IOCTL_ADAPT_GET_CURRENT_FRAME

... 287 IOCTL_ADAPT_GET_DEVICE_NAME

... 288 IOCTL_ADAPT_GET_DEVICE_POWER_STATE

... 299 IOCTL_ADAPT_GET_DEVICE_SPEED

... 2910 IOCTL_ADAPT_GET_DRIVER_VERSION

... 3011 IOCTL_ADAPT_GET_FRIENDLY_NAME

... 3012 IOCTL_ADAPT_GET_NUMBER_ENDPOINTS

... 3113 IOCTL_ADAPT_GET_TRANSFER_SIZE

... 3214 IOCTL_ADAPT_GET_USBDI_VERSION

... 3215 IOCTL_ADAPT_RESET_PARENT_PORT

... 3316 IOCTL_ADAPT_RESET_PIPE

... 3317 IOCTL_ADAPT_SELECT_INTERFACE

... 3318 IOCTL_ADAPT_SEND_EP0_CONTROL_TRANSFER

... 3519 IOCTL_ADAPT_SEND_NON_EP0_TRANSFER

... 3620 IOCTL_ADAPT_SEND_NON_EP0_DIRECT

... 4021 IOCTL_ADAPT_SET_DEVICE_POWER_STATE

... 4022 IOCTL_ADAPT_SET_TRANSFER_SIZE

3Contents

3

© 2011 Cypress Semiconductor

Part VII CYIOCTL.H 41

... 431 ISO_ADV_PARAMS

... 452 SINGLE_TRANSFER

... 463 SETUP_PACKET

... 474 SET_TRANSFER_SIZE_INFO

Index 49

Cypress CyUsb.sys Programmer's Reference4

© 2011 Cypress Semiconductor

1 Driver Overview

Driver Overview Top Next

The CYUSB.SYS driver is licensed for distribution ONLY with Cypress USB products and
products that employ Cypress USB chips.

CYUSB.SYS is a USB device driver for 32 bit Windows 2000, 32/64 bit Windows XP, 32/64 bit Windows
Vista and 32/64bit Windows 7(Vista versions of cyusb.sys have been tested and compatible with
Windows 7) , that is capable of communicating with any USB 2.0 compliant device. The driver is general-
purpose, understanding primitive USB commands, but not implementing higher-level, USB device-class
specific commands. For this reason, the driver is not capable, for instance, of interfacing a USB mass
storage class device to the Windows file system.

However, the driver would be ideal for communicating with a vendor-specific device from a custom USB
application. Or, it might be used to send low-level USB requests to any USB device for experimental or
diagnostic applications.

In order to use the driver to communicate with a device, Windows must match the device to the driver.

The class library, CyAPI.lib and Cyusb.dll, provides a high-level programming interface to the driver. This
help file documents the low-level, more cumbersome and explicit, programming interface.

Features

 • Windows Driver Model (WDM) compliant

 • WHQL Certified (not signed)

 • Compatible with any USB 2.0 compliant device

 • Supports Windows PnP and Power Management
level S4

 • Supports USB Remote Wake-up

 • Supports Control, Bulk, Interrupt and
Isochronous endpoints

 • Supports multiple USB devices connected at
once

 • Supports customizable driver GUID without re-
building the driver

 • Supports high bandwidth data transfers passing
multiple packets per uframe

 • Supports automatic play-back of control transfer
scripts at device startup

2 Features Not Supported

The Following features are not supported by CyUSB.sys driver due to the lack of interface URBs to the
Bus driver.

1. SET ADDRESS Feature

Features Not Supported 5

© 2011 Cypress Semiconductor

 The SET ADDRESS Request cannot be implemented through control endpoint.

2. SYNC FRAME

 The SYNC FRAME Request cannot be implemented through Control Endpoint.

3 Modifying CyUSB.INF

Modifying CyUSB.INF Previous Top Next

The CYUSB.INF file can be modified to accomplish several different objectives. These are:

1. Add a device's identifiers to the driver
2. Replace Cypress strings that are displayed during driver installation
3. Implement a custom GUID for the driver
4. Execute a saved script of commands at driver load time

NOTE: Below steps cover 32/64 bit INF section update, Ntx86 refer to the 32bit system and Ntamd64
refer to 64 bit system. Same INF file will be used to install driver on 32/64 bit Operating System.

Add a device's identifiers to the driver

To make the driver match to a specific device, the device's vendor ID and product ID need to be added to
the .inf file.

Locate the following sections [Device],[Device.NT],[Device.Ntx86] and [Device.Ntamd64] and
remove the semicolon of each item under the each section
;%VID_XXXX&PID_XXXX.DeviceDesc%=CyUsb, USB\VID_XXXX&PID_XXXX

Change the VID_XXXX to contain the hexadecimal value of the VendorID for the device

Change the PID_XXXX to contain the hexadecimal value of the ProductID for the device

For example, a device with vendorID 0x04B4 and productID 0xDE01 would have a new entry in the above
listed sections like
following
%VID_04B4&PID_DE01.DeviceDesc%=CyUSB, USB\VID_04B4&PID_DE01

Change [String] section for Device Description according to the Vendor ID and Product ID.
VID_XXXX&PID_XXXX.DeviceDesc="Cypress USB Generic Driver (3.4.4.00)"

Change the VID_XXXX to contain the hexadecimal value of the VendorID for the device

Change the PID_XXXX to contain the hexadecimal value of the ProductID for the device

For example, a device with vendorID 0x04B4 and productID 0xDE01 would have a new entry in the
[Strings] section like the
following
VID_04B4&PID_DE01.DeviceDesc="Cypress OTG DE1 DevBoard"

Cypress CyUsb.sys Programmer's Reference6

© 2011 Cypress Semiconductor

Replace Cypress strings

If you plan to do more than just add your device's VID/PID to the CYUSB.INF file, it is strongly
recommended that you create your own .INF file and a copy of CYUSB.SYS that you have re-named.
The remaining instructions assume that you have created your own .INF file to match your newly named
copy of CYUSB.SYS.

The driver can be customized to report a company other than Cypress as its manufacturer and provider.

Locate the [Strings] section at the bottom of the CYUSB.INF file.

Change the quoted CYUSB_Provider string.

Change the quoted CYUSB_DisplayName string.

Change the quoted CYUSB_Company string.

Change the quoted CYUSB_Description string.

Implement a custom GUID

Applications software usually accesses the driver using the driver's Global Unique IDentifier (GUID).
Each driver in the Windows system should have a unique GUID. By employing distinct GUIDs, multiple
instances of CYUSB.SYS from different hardware vendors can exist on a given system without colliding.

To change the driver's GUID,

Use the GUIDGEN.EXE utility (distributed with Microsoft Visual Studio) to get a new GUID.

Locate the [Strings] section in the CyUSB.inf file

Locate the line
CYUSB.GUID="{AE18AA60-7F6A-11d4-97DD-00010229B959}"

and replace the quoted GUID string with the new one you created. (Retain the curly braces.)

Execute a script at start-up

The CYUSB.SYS driver can be used to perform transfers to the default control endpoint (endpoint
address 0) when the device is started.

To configure the driver to perform a control transfer at startup

Use the CyConsole.exe application to create a script file containing the control transfer commands.

Save the script as a file named MyDevice.SPT

Place that script file in the same directory as the the driver's .INF file

Modifying CyUSB.INF 7

© 2011 Cypress Semiconductor

A common use of this feature is to have the driver play a script which downloads a firmware image to the
USB device, thereby modifying its "personality" and usually causing it to re-enumerate on the bus. If this
re-enumeration occurs with the same VID/PID as the original "personality", the script will be executed
again and again in an un-ending loop.

To avoid this endless loop scenario, the second personality should enumerate with a different VID/PID
than the one which caused the script to play.

The .inf file can be modified to play a script when one VID/PID is enumerated and to simply load the
driver when a different VID/PID is detected.

The following is an excerpt from a .inf file that plays a script called MyDevice.spt when VID/PID of
04B4/8613 is enumerated. If VID/PID 0547/1002 enumerates, the script is not played. (This .inf is
compatible with WinXP, Win2k, 32/64bit Windows Vista and 32/64bit Windows 7)

 [Version]

Signature="$WINDOWS NT$"
Class=USB
ClassGUID={36FC9E60-C465-11CF-8056-444553540000}
provider=%CYUSB_Provider%
CatalogFile=CYUSB.cat
DriverVer=10/12/2009,3.4.4.00

[SourceDisksNames]
1=%CYUSB_Install%,,,

[SourceDisksFiles]
CYUSB.sys = 1

[DestinationDirs]
CYUSB.Files.Ext = 10,System32\Drivers
MyDevice.Files.Ext = 10,System32\MyDevice

[ControlFlags]
ExcludeFromSelect = *

[Manufacturer]
%CYUSB_Provider%=Device,NT,NTx86,NTamd64

;for all platforms
[Device]
%VID_04B4&PID_8613.DeviceDesc%=MyDevice, USB\VID_04B4&PID_8613
%VID_0547&PID_1002.DeviceDesc%=CyUsb, USB\VID_0547&PID_1002

;for windows 2000 non intel platforms
[Device.NT]
%VID_04B4&PID_8613.DeviceDesc%=MyDevice, USB\VID_04B4&PID_8613
%VID_0547&PID_1002.DeviceDesc%=CyUsb, USB\VID_0547&PID_1002

;for x86 platforms
[Device.NTx86]
%VID_04B4&PID_8613.DeviceDesc%=MyDevice, USB\VID_04B4&PID_8613
%VID_0547&PID_1002.DeviceDesc%=CyUsb, USB\VID_0547&PID_1002

;for x64 platforms

Cypress CyUsb.sys Programmer's Reference8

© 2011 Cypress Semiconductor

[Device.NTamd64]
%VID_04B4&PID_8613.DeviceDesc%=MyDevice, USB\VID_04B4&PID_8613
%VID_0547&PID_1002.DeviceDesc%=CyUsb, USB\VID_0547&PID_1002

[MyDevice]
CopyFiles=CYUSB.Files.Ext,MyDevice.Files.Ext
AddReg=CyUsb.AddReg

[MyDevice.HW]
AddReg=MyDevice.AddReg.Guid

[MyDevice.Services]
Addservice = CYUSB,2,CYUSB.AddService

[MyDevice.NT]
CopyFiles=CYUSB.Files.Ext, MyDevice.Files.Ext
AddReg=CyUsb.AddReg

[MyDevice.NT.HW]
AddReg=MyDevice.AddReg.Guid

[MyDevice.NT.Services]
Addservice = CYUSB,2,CYUSB.AddService

[MyDevice.NTx86]
CopyFiles=CYUSB.Files.Ext, MyDevice.Files.Ext
AddReg=CyUsb.AddReg

[MyDevice.NTx86.HW]
AddReg=MyDevice.AddReg.Guid

[MyDevice.NTx86.Services]
Addservice = CYUSB,2,CYUSB.AddService

[MyDevice.NTamd64]
CopyFiles=CYUSB.Files.Ext, MyDevice.Files.Ext
AddReg=CyUsb.AddReg

[MyDevice.NTamd64.HW]
AddReg=MyDevice.AddReg.Guid

[MyDevice.NTamd64.Services]
Addservice = CYUSB,2,CYUSB.AddService

[MyDevice.AddReg.Guid]
HKR,,DriverGUID,,%CYUSB.GUID%
HKR,,DriverEXECSCRIPT,,%MyDevice.EXECSCRIPT%

[MyDevice.Files.Ext]
MyDevice.spt

[CYUSB]
CopyFiles=CYUSB.Files.Ext

Modifying CyUSB.INF 9

© 2011 Cypress Semiconductor

AddReg=CyUsb.AddReg

[CYUSB.HW]
AddReg=CYUSB.AddReg.Guid

[CYUSB.Services]
Addservice = CYUSB,2,CYUSB.AddService

[CYUSB.NT]
CopyFiles=CYUSB.Files.Ext
AddReg=CyUsb.AddReg

[CYUSB.NT.HW]
AddReg=CYUSB.AddReg.Guid

[CYUSB.NT.Services]
Addservice = CYUSB,2,CYUSB.AddService

[CYUSB.NTx86]
CopyFiles=CYUSB.Files.Ext
AddReg=CyUsb.AddReg

[CYUSB.NTx86.HW]
AddReg=CYUSB.AddReg.Guid

[CYUSB.NTx86.Services]
Addservice = CYUSB,2,CYUSB.AddService

[CYUSB.NTamd64]
CopyFiles=CYUSB.Files.Ext
AddReg=CyUsb.AddReg

[CYUSB.NTamd64.HW]
AddReg=CYUSB.AddReg.Guid

[CYUSB.NTamd64.Services]
Addservice = CYUSB,2,CYUSB.AddService

[CYUSB.AddReg]
; Deprecating - do not use in new apps to identify a CYUSB driver
HKR,,DevLoader,,*ntkern
HKR,,NTMPDriver,,CYUSB.sys
; You may optionally include a check for DriverBase in your application to check
for a CYUSB driver
HKR,,DriverBase,,CYUSB.sys
HKR,"Parameters","MaximumTransferSize",0x10001,4096
HKR,"Parameters","DebugLevel",0x10001,2
HKR,,FriendlyName,,%CYUSB_Description%

[CYUSB.AddService]
DisplayName = %CYUSB_Description%
ServiceType = 1 ; SERVICE_KERNEL_DRIVER
StartType = 3 ; SERVICE_DEMAND_START

Cypress CyUsb.sys Programmer's Reference10

© 2011 Cypress Semiconductor

ErrorControl = 1 ; SERVICE_ERROR_NORMAL
ServiceBinary = %10%\System32\Drivers\CYUSB.sys
AddReg = CYUSB.AddReg
LoadOrderGroup = Base

[CYUSB.Files.Ext]
CYUSB.sys

[CYUSB.AddReg.Guid]
HKR,,DriverGUID,,%CYUSB.GUID%

[Strings]
CYUSB_Provider = "Cypress"
CYUSB_Company = "Cypress Semiconductor Corporation"
CYUSB_Description = "Cypress Generic USB Driver"
CYUSB_DisplayName = "Cypress USB Generic"
CYUSB_Install = "Cypress CYUSB Driver Installation Disk"
VID_XXXX&PID_XXXX.DeviceDesc="Cypress USB Generic Driver (3.4.4.00)"
CYUSB.GUID="{AE18AA60-7F6A-11d4-97DD-00010229B959}"
CYUSB_Unused = "."
MyDevice.EXECSCRIPT="\systemroot\system32\MyDevice\MyDevice.spt"

4 Matching Devices to the Driver

Matching Devices to the Driver Previous Top Next

Usually, matching of a USB device to the CYUSB.SYS driver will need to be manually configured.

Following are the steps user has to follow to install driver on Windows OS.

Step 1 : Add the device's VendorID and ProductID to the CYUSB.INF file.
Step 2 : Force Windows to use the CYUSB.SYS driver with the device.

Though similar, these steps are slightly different for Windows 2000 , WinXP and Windows Vista and 7

 �

4.1 Windows 2000

Matching Devices to the Driver (Win2K-
Specific)

Previous Top Next

Usually, matching of a USB device to the CYUSB.SYS driver will need to be manually configured. This
configuration consist of two steps.

Step 1 : Add the device's VendorID and ProductID to the CYUSB.INF file.

Matching Devices to the Driver 11

© 2011 Cypress Semiconductor

 After installation of the Cypress Suite USB

installer, the driver file is located in a Driver
subdirectory of the install directory. (Default is C:
\Program Files\Cypress\Cypress Suite USB 3.4.1
\Driver\bin.)

 Open the file CYUSB.INF with a text editor

(notepad.exe, for instance)

 Locate the following sections [Device],[Device.

NT],[Device.Ntx86] and [Device.Ntamd64] and
remove the semicolon of each item under the
each section

 ;%VID_XXXX&PID_XXXX.DeviceDesc%
=CyUsb, USB\VID_XXXX&PID_XXXX

 Change the VID_XXXX to contain the

hexadecimal value of the VendorID for the device

 Change the PID_XXXX to contain the

hexadecimal value of the ProductID for the device

 For example, a device with vendorID 0x04B4 and

productID 0xDE01 would have a new entry in the
above listed sections like following:

 %VID_04B4&PID_DE01.DeviceDesc%=CyUSB,
USB\VID_04B4&PID_DE01

 Change [String] section for Device Description

according to the Vendor ID and Product ID.
 VID_XXXX&PID_XXXX.DeviceDesc="Cypress

USB Generic Driver (3.4.3.00)"

 Change the VID_XXXX to contain the

hexadecimal value of the VendorID for the device

 Change the PID_XXXX to contain the

hexadecimal value of the ProductID for the device

 For example, a device with vendorID 0x04B4 and

productID 0xDE01 would have a new entry in the

Cypress CyUsb.sys Programmer's Reference12

© 2011 Cypress Semiconductor

[Strings] section like the following:
 VID_04B4&PID_DE01.DeviceDesc="Cypress

OTG DE1 DevBoard"

 Save the file.

Step 2 : Force Windows2000 to use the CYUSB.SYS driver with the device.

 Connect the device to the PC

 If Windows prompts for a driver or indicates that

it needs a driver, direct the PC to use the
CYUSB.SYS driver by steering it to the CYUSB.
INF file in the [InstallDir]\Driver directory.

 If Windows does not prompt for a driver, it has

already matched the device to a driver itself. In
this case, you will need to see if the CYUSB.
SYS driver was selected and, if not, manually
instruct Windows to use that driver.

 Right-click My Computer and select the

Manage menu item.

 In the Computer Management window, select

Device Manager

 In the right window pane, click the + icon next to

Universal Serial Bus controllers

 Locate your device in the list and double click on

it

 Select the Driver tab in the Properties dialog

that comes up

Matching Devices to the Driver 13

© 2011 Cypress Semiconductor

 Click on the Driver Details button.

 If the displayed driver file is CYUSB.SYS,

Windows has already matched the device to this
driver and you should click OK and Cancel . If
not, proceed with the remaining steps.

 Click OK

 Select Update Driver

 Click Next

 Select Search for a suitable driver for my

device (recommended)

 Click Next

 Select Specify a location

 Click Next

 Navigate to the directory containing CYUSB.SYS

(Directory Name for various Operating System
and platform: w2k(windows 200), wlh(windows
Vista), wxp(Windows XP),x86(32-bit OS) and x64
(64-bit OS))

 CYUSB.INF should be automatically placed in

the File name field

Cypress CyUsb.sys Programmer's Reference14

© 2011 Cypress Semiconductor

 Click Open

 Click OK

 Click Next

 Click Finish

 Don't re-boot your system if Windows suggests

that you must. You may need to unplug and re-
plug your device, however.

 �

4.2 Windows XP

Matching Devices to the Driver Previous Top Next

Usually, matching of a USB device to the CYUSB.SYS driver will need to be manually configured. This
configuration consist of two steps.

Pre-required steps to Install unsigned driver on 64-bit system.

 Reboot the system where CyUSB.sys driver will
be installed

 Press F8 while boot up of Operating System

 Select the option "Disable Driver Signature

Enforcement" and Press enter

 Now follow step 2 to install the driver.

Please note that every time you reboot the system ,you have follow above steps except last step
otherwise device driver will not function.

Step 1 : Add the device's VendorID and ProductID to the CYUSB.INF file.

 After installation of the Cypress Suite USB

installer, the driver file is located in a Driver
subdirectory of the install directory. (Default is C:
\Program Files\Cypress\Cypress Suite USB
3.4.1\Driver\bin.)

Matching Devices to the Driver 15

© 2011 Cypress Semiconductor

 Open the file CYUSB.INF with a text editor

(notepad.exe, for instance)

 Locate the following sections [Device],[Device.

NT],[Device.Ntx86] and [Device.Ntamd64]
 and remove the semicolon of each item under
the each section

 ;%VID_XXXX&PID_XXXX.DeviceDesc%
=CyUsb, USB\VID_XXXX&PID_XXXX

 Change the VID_XXXX to contain the

hexadecimal value of the VendorID for the
device

 Change the PID_XXXX to contain the

hexadecimal value of the ProductID for the
device

 For example, a device with vendorID 0x04B4 and

productID 0xDE01 would have a new entry in the
above listed sections like following:

 %VID_04B4&PID_DE01.DeviceDesc%=CyUSB,
USB\VID_04B4&PID_DE01

 Change [String] section for Device Description

according to the Vendor ID and Product ID.
 VID_XXXX&PID_XXXX.DeviceDesc="Cypress

USB Generic Driver (3.4.3.00)"

 Change the VID_XXXX to contain the

hexadecimal value of the VendorID for the
device

 Change the PID_XXXX to contain the

hexadecimal value of the ProductID for the
device

 For example, a device with vendorID 0x04B4 and

productID 0xDE01 would have a new entry in the
[Strings] section like the following:

 VID_04B4&PID_DE01.DeviceDesc="Cypress

Cypress CyUsb.sys Programmer's Reference16

© 2011 Cypress Semiconductor

OTG DE1 DevBoard"

 Save the file.

Step 2 : Force WindowsXP to use the CYUSB.SYS driver with the device.

 Connect the device to the PC

 If Windows prompts for a driver or indicates that

it needs a driver, direct the PC to use the
CYUSB.SYS driver by steering it to the CYUSB.
INF file in the [InstallDir]\Driver directory.

 If Windows does not prompt for a driver, it has

already matched the device to a driver itself. In
this case, you will need to see if the CYUSB.
SYS driver was selected and, if not, manually
instruct Windows to use that driver.

 Right-click My Computer and select the

Manage menu item.

 In the Computer Management window, select

Device Manager

 In the right window pane, click the + icon next to

Universal Serial Bus controllers

 Locate your device in the list and double click on

it

 Select the Driver tab in the Properties dialog

that comes up

 Click on the Driver Details button.

Matching Devices to the Driver 17

© 2011 Cypress Semiconductor

 If the displayed driver file is CYUSB.SYS,

Windows has already matched the device to this
driver and you should click OK and Cancel . If
not, proceed with the remaining steps.

 Click OK

 Click Update Driver

 Select Install from a list or specific location

(Advanced)

 Click Next

 Select Don't search. I will choose the driver

to install.

 Click Next

 Click Have Disk

 Click Browse

 Navigate to the directory containing CYUSB.SYS

(wxp(Windows XP) and select x86(32-bit OS) or
x64(64-bit OS)) based on the platform you want
to install driver on.

 CYUSB.INF should be automatically placed in

the File name field

Cypress CyUsb.sys Programmer's Reference18

© 2011 Cypress Semiconductor

 Click Open

 Click OK

 Click Next

 It will popup message saying Unsigned

driver, Please select 'Install driver software
anyway' and click ok.

 Click Finish

 Click Close

 Don't re-boot your system if Windows suggests

that you must. You may need to unplug and re-
plug your device, however.

 �

4.3 Windows Vista and 7

Matching Devices to the Driver Previous Top Next

Usually, matching of a USB device to the CYUSB.SYS driver will need to be manually configured. This
configuration consist of two steps.

Pre-required steps to Install unsigned driver on 64-bit system.

 Reboot the system where CyUSB.sys driver will
be installed

 Press F8 while boot up of Operating System

 Select the option "Disable Driver Signature

Enforcement" and Press enter

 Now follow step 2 to install the driver.

Matching Devices to the Driver 19

© 2011 Cypress Semiconductor

Please note that every time you reboot the system ,you have follow above steps except last step
otherwise device driver will not function.

Step 1 : Add the device's VendorID and ProductID to the CYUSB.INF file.

 After installation of the Cypress Suite USB

installer, the driver file is located in a Driver
subdirectory of the install directory. (Default is C:
\Program Files\Cypress\Cypress Suite USB
3.4.1\Driver\bin.)

 Open the file CYUSB.INF with a text editor

(notepad.exe, for instance)

 Locate the following sections [Device],[Device.

NT],[Device.Ntx86] and [Device.Ntamd64] and
remove the semicolon of each item under the
each section

 ;%VID_XXXX&PID_XXXX.DeviceDesc%
=CyUsb, USB\VID_XXXX&PID_XXXX

 Change the VID_XXXX to contain the

hexadecimal value of the VendorID for the
device

 Change the PID_XXXX to contain the

hexadecimal value of the ProductID for the
device

 For example, a device with vendorID 0x04B4 and

productID 0xDE01 would have a new entry in the
above listed sections like following:

 %VID_04B4&PID_DE01.DeviceDesc%=CyUSB,
USB\VID_04B4&PID_DE01

 Change [String] section for Device Description

according to the Vendor ID and Product ID.
 VID_XXXX&PID_XXXX.DeviceDesc="Cypress

USB Generic Driver (3.4.3.00)"

 Change the VID_XXXX to contain the

hexadecimal value of the VendorID for the
device

Cypress CyUsb.sys Programmer's Reference20

© 2011 Cypress Semiconductor

 Change the PID_XXXX to contain the

hexadecimal value of the ProductID for the
device

 For example, a device with vendorID 0x04B4 and

productID 0xDE01 would have a new entry in the
[Strings] section like the following:

 VID_04B4&PID_DE01.DeviceDesc="Cypress
OTG DE1 DevBoard"

 Save the file.

Step 2 : Force Windows Visat/Windows 7 to use the CYUSB.SYS driver with the device.

 Connect the device to the PC

 If Windows prompts for a driver or indicates that

it needs a driver, direct the PC to use the
CYUSB.SYS driver by steering it to the CYUSB.
INF file in the [InstallDir]\Driver directory.

 If Windows does not prompt for a driver, it has

already matched the device to a driver itself. In
this case, you will need to see if the CYUSB.
SYS driver was selected and, if not, manually
instruct Windows to use that driver.

 Right-click My Computer and select the

Manage menu item.

 In the Computer Management window, select

Device Manager

 In the right window pane, click the + icon next to

Universal Serial Bus controllers

Matching Devices to the Driver 21

© 2011 Cypress Semiconductor

 Locate your device in the list and double click on

it

 Select the Driver tab in the Properties dialog

that comes up

 Click on the Driver Details button.

 If the displayed driver file is CYUSB.SYS,

Windows has already matched the device to this
driver and you should click OK and Cancel . If
not, proceed with the remaining steps.

 Click OK

 Click Update Driver

 Select Browse my computer for driver

software

 Click Next

 Select Let me pick from a list of device

drivers on my computer

 Click Next

 Select Select your device's type from list

below and Select show all device

 Click Next

Cypress CyUsb.sys Programmer's Reference22

© 2011 Cypress Semiconductor

 Click Have Disk

 Click Browse

 Navigate to the directory containing CYUSB.SYS

(Directory Name for various Operating System
and platform: wlh(windows Vista, windows 7)
and select x86(32-bit OS) or x64(64-bit OS))
based on the platform you want to install driver
on.

 NOTE : Use Windows Vista driver binary for
Windows 7 OS.

 CYUSB.INF should be automatically placed in

the File name field

 Click Open

 Click OK

 Click Next

 It will popup message saying Unsigned

driver, Please select 'Install driver software
anyway' and click ok.

 Click Finish

 Click Close

 Don't re-boot your system if Windows suggests that

you must. You may need to unplug and re-plug your
device, however.

Matching Devices to the Driver 23

© 2011 Cypress Semiconductor

 �

5 Reinstalling the Driver

Things to be taken care
 While reinstalling the driver with another .inf file which contains the same VID- PID combination, it's
safe to remove all oemXX.inf and oemXX.pnf files from the directory "C:\WINDOWS\inf\" which have
same VID-PID combination.

Note:
 Installing the driver using .inf file, Windows creates corresponding oemXX.inf and oemXX.pnf backup
files in the directory "C:\WINDOWS\inf\". There is a chance for mistaking the backup .inf file instead of
the new .inf file that customer really want to install.

6 The IOCTL Interface

The IO Control Interface Previous Top Next

Applications software communicates with the CYUSB.SYS driver primarily through the DeviceIoControl()
function. (See the Windows SDK documentation for details about DeviceIoControl.)

Calls to DeviceIoControl require an IO Control (aka IOCTL) code parameter. The IOCTL codes define the
programming interface that a driver supports and are particular to any given driver. The control code
specified in a DeviceIoControl() call determines the values that must be specified for the other
DeviceIoControl parameters.

This help file provides the IOCTL 'dictionary' for the CYUSB.SYS driver.

Example

DWORD dwBytes = 0;
UCHAR EndptAddress = 0x82;

DeviceIoControl(hDevice, IOCTL_ADAPT_RESET_PIPE,
 &EndptAddress, sizeof (EndptAddress),

 NULL, 0,
 &dwBytes, NULL);

6.1 Getting a Handle to the Driver

Getting a Handle to the Driver Previous Top Next

In order to use the IOCTL codes supported by the driver, you will need to obtain a Windows handle to the
driver.

A very simple way to accomplish this is to utilize the CyAPI class library. After creating a
CCyUSBDevice object, a handle to the driver will have been setup automatically. Closing or deleting the

Cypress CyUsb.sys Programmer's Reference24

© 2011 Cypress Semiconductor

CCyUSBDevice object frees the handle.

Example 1:

CCyUSBDevice *USBDevice = new CCyUSBDevice();

HANDLE hDevice = USBDevice->DeviceHandle();
.
.
.
.
delete USBDevice;

The more typical (and complex) way to obtain a handle is to make a sequence of SetupDi calls, passing
the driver GUID declared in CyAPI.h. The default driver guid is defined as:

// {AE18AA60-7F6A-11d4-97DD-00010229B959}

static GUID CYUSBDRV_GUID = {0xae18aa60, 0x7f6a, 0x11d4, 0x97, 0xdd, 0x0, 0x1, 0x2,

0x29, 0xb9, 0x59};

The CyAPI library uses the following code to obtain a handle, using the GUID.

Example 2:

SP_DEVINFO_DATA devInfoData;
SP_DEVICE_INTERFACE_DATA devInterfaceData;
PSP_INTERFACE_DEVICE_DETAIL_DATA functionClassDeviceData;

ULONG requiredLength = 0;
int deviceNumber = 0; // Can be other values if more than 1 device connected to driver

HDEVINFO hwDeviceInfo = SetupDiGetClassDevs ((LPGUID) &CYUSBDRV_GUID,
 NULL,
 NULL,
 DIGCF_PRESENT|DIGCF_INTERFACEDEVICE);

if (hwDeviceInfo != INVALID_HANDLE_VALUE) {

devInterfaceData.cbSize = sizeof(devInterfaceData);

if (SetupDiEnumDeviceInterfaces (hwDeviceInfo, 0, (LPGUID) &CYUSBDRV_GUID,

 deviceNumber, &devInterfaceData)) {

 SetupDiGetInterfaceDeviceDetail (hwDeviceInfo, &devInterfaceData, NULL, 0,
 &requiredLength, NULL);

 ULONG predictedLength = requiredLength;

 functionClassDeviceData = (PSP_INTERFACE_DEVICE_DETAIL_DATA) malloc
(predictedLength);

The IOCTL Interface 25

© 2011 Cypress Semiconductor

 functionClassDeviceData->cbSize = sizeof (SP_INTERFACE_DEVICE_DETAIL_DATA);

 devInfoData.cbSize = sizeof(devInfoData);

if (SetupDiGetInterfaceDeviceDetail (hwDeviceInfo,

 &devInterfaceData,
 functionClassDeviceData,
 predictedLength,
 &requiredLength,
 &devInfoData)) {

 hDevice = CreateFile (functionClassDeviceData->DevicePath,
 GENERIC_WRITE | GENERIC_READ,
 FILE_SHARE_WRITE | FILE_SHARE_READ,
 NULL,
 OPEN_EXISTING,
 FILE_FLAG_OVERLAPPED,
 NULL);

 free(functionClassDeviceData);
 SetupDiDestroyDeviceInfoList(hwDeviceInfo);
 }

}

}

6.2 IOCTL_ADAPT_ABORT_PIPE

IOCTL_ADAPT_ABORT_PIPE Previous Top Next

Description

This command is used to cancel pending IO requests on an endpoint.

A pointer to a variable containing the endpoint address is passed as the lpInBuffer parameter to the
DeviceIoControl() function. A null pointer is passed as the lpOutBuffer parameter.

Example

DWORD dwBytes = 0;
UCHAR Address = 0x82;

DeviceIoControl(hDevice, IOCTL_ADAPT_ABORT_PIPE,
 &Address, sizeof (UCHAR),

 NULL, 0,
 &dwBytes, NULL);

Cypress CyUsb.sys Programmer's Reference26

© 2011 Cypress Semiconductor

6.3 IOCTL_ADAPT_CYCLE_PORT

IOCTL_ADAPT_CYCLE_PORT Previous Top Next

Description

This command causes the USB device to be logically disconnected from the bus and, then, re-
connected.

NULL pointers are passed to DeviceIoControl in the pInBuffer and pOutBuffer parameters.

Example

DWORD dwBytes = 0;

DeviceIoControl(hDevice, IOCTL_ADAPT_CYCLE_PORT,
 NULL, 0,
 NULL, 0,
 &dwBytes, NULL);

6.4 IOCTL_ADAPT_GET_ADDRESS

IOCTL_ADAPT_GET_ADDRESS Previous Top Next

Description

This command retrieves the USB address of the device from the Windows host controller driver.

A pointer to a 1-byte variable is passed as both the lpInBuffer and lpOutBuffer parameters to the
DeviceIoControl() function.

The size of the variable (1) is passed in the nInBufferSize and nOutBufferSize parameters.

Example

DWORD dwBytes = 0;
UCHAR DevAddr;

DeviceIoControl(hDevice, IOCTL_ADAPT_GET_ADDRESS,
 &DevAddr, sizeof (UCHAR),

 &DevAddr, sizeof (UCHAR),

 &dwBytes, NULL);

6.5 IOCTL_ADAPT_GET_ALT_INTERFACE_SETTING

IOCTL_ADAPT_GET_ALT_INTERFACE
_SETTING

Previous Top Next

The IOCTL Interface 27

© 2011 Cypress Semiconductor

Description

This command retrieves the alternate interface setting for a particular interface of the attached device.

A pointer to a byte indicating the interface number is passed as the lpInBuffer parameter to the
DeviceIoControl() function.

A pointer to a byte into which the alternate interface setting will be reported is passed as the lpOutBuffer
parameter to the DeviceIoControl() function.

The length of the variables (1) is passed in the nInBufferSize and nOutBufferSize parameters.

Example

DWORD dwBytes = 0;
UCHAR intfc = 0;
UCHAR alt;

DeviceIoControl(hDevice, IOCTL_ADAPT_GET_ALT_INTERFACE_SETTING,
 &intfc, sizeof (alt),

 &alt, sizeof (alt),

 &dwBytes, NULL);

6.6 IOCTL_ADAPT_GET_CURRENT_FRAME

IOCTL_ADAPT_GET_CURRENT_FRA
ME

Previous Top Next

Description

This command returns the current frame number from the host controller driver.

A pointer to a 4-byte variable is passed as both the lpInBuffer and lpOutBuffer parameters to the
DeviceIoControl() function.

The size of the variable (4) is passed in the nInBufferSize and nOutBufferSize parameters.

Example

 DWORD dwBytes = 0;

 ULONG CurrentFrame;

 DeviceIoControl(hDevice,
IOCTL_ADAPT_GET_CURRENT_FRAME,

 &CurrentFrame, sizeof (ULONG),

 &CurrentFrame, sizeof (ULONG),

 &dwBytes, NULL);

Cypress CyUsb.sys Programmer's Reference28

© 2011 Cypress Semiconductor

6.7 IOCTL_ADAPT_GET_DEVICE_NAME

IOCTL_ADAPT_GET_DEVICE_NAME Previous Top Next

Description

This command retrieves the Product string descriptor value for the attached device.

A pointer to a character buffer is passed as both the lpInBuffer and lpOutBuffer parameters to the
DeviceIoControl() function.

The length of the buffer is passed in the nInBufferSize and nOutBufferSize parameters.

Example

DWORD dwBytes = 0;
ULONG len = 256;
UCHAR *buf = new UCHAR[len];

DeviceIoControl(hDevice, IOCTL_ADAPT_GET_DEVICE_NAME,
 buf, len,
 buf, len,
 &dwBytes, NULL);

delete[] buf;

6.8 IOCTL_ADAPT_GET_DEVICE_POWER_STATE

IOCTL_ADAPT_GET_DEVICE_POWER
_STATE

Previous Top Next

Description

This command retrieves the power state of the device

A pointer to a ULONG variable (pwrState) is passed as both the lpInBuffer and lpOutBuffer parameters to
the DeviceIoControl() function.

The size of the pwrState variable (4) is passed in the nInBufferSize and nOutBufferSize parameters.

Possible return values for the pwrState are:

1 => Power State D0 (Full On)
2 => Power State D1
3 => Power State D2
4 => Power State D3 (Full Asleep)

Example

DWORD dwBytes = 0;

The IOCTL Interface 29

© 2011 Cypress Semiconductor

ULONG pwrState;

DeviceIoControl(hDevice, IOCTL_ADAPT_GET_DEVICE_POWER_STATE,
 &pwrState, sizeof (pwrState),

 &pwrState, sizeof (pwrState),

 &dwBytes, NULL);

6.9 IOCTL_ADAPT_GET_DEVICE_SPEED

IOCTL_ADAPT_GET_DEVICE_SPEED Previous Top Next

Description

This command attempts to report the current operating speed of the USB device. It will return
DEVICE_SPEED_HIGH, DEVICE_SPEED_LOW_FULL, or DEVICE_SPEED_UNKNOWN. It uses the
IsDeviceHighSpeed routine, but this routine is only supported in Version 1 of the USBD interface. Windows 2K
SP4, Windows XP and later all support Version 1 of the USBD interface. If the IsDeviceHighSpeed routine is not
available, DEVICE_SPEED_UNKNOWN is returned.

A pointer to a 4-byte variable is passed as both the lpInBuffer and lpOutBuffer parameters to the
DeviceIoControl() function.

The size of the variable (4) is passed in the nInBufferSize and nOutBufferSize parameters.

Defines (cyioctl.h)

 #define DEVICE_SPEED_UNKNOWN

0x00000000

 #define DEVICE_SPEED_LOW_FULL
0x00000001

 #define DEVICE_SPEED_HIGH 0x00000002

Example

 DWORD dwBytes = 0;

 ULONG DevSpeed;

 DeviceIoControl(hDevice,
IOCTL_ADAPT_GET_DEVICE_SPEED,

 &DevSpeed, sizeof (ULONG),

 &DevSpeed, sizeof (ULONG),

 &dwBytes, NULL);

6.10 IOCTL_ADAPT_GET_DRIVER_VERSION

IOCTL_ADAPT_GET_DRIVER_VERSIO
N

Previous Top Next

Cypress CyUsb.sys Programmer's Reference30

© 2011 Cypress Semiconductor

Description

This command retrieves the version of the driver.

A pointer to a 4-byte variable is passed as both the lpInBuffer and lpOutBuffer parameters to the
DeviceIoControl() function.

The size of the variable (4) is passed in the nInBufferSize and nOutBufferSize parameters.

Example

DWORD dwBytes = 0;
ULONG ver;

DeviceIoControl(hDevice, IOCTL_ADAPT_GET_DRIVER_VERSION,
 &ver, sizeof (ver),

 &ver, sizeof (ver),

 &dwBytes, NULL);

6.11 IOCTL_ADAPT_GET_FRIENDLY_NAME

IOCTL_ADAPT_GET_FRIENDLY_NAM
E

Previous Top Next

Description

This command retrieves the string associated with the device in the [Strings] section of the CyUSB.inf
file.

A pointer to an array of unsigned characters is passed as both the lpInBuffer and lpOutBuffer parameters
to the DeviceIoControl() function.

The size of the array is passed in the nInBufferSize and nOutBufferSize parameters.

Example

DWORD dwBytes = 0;
PUCHAR FriendlyName = new UCHAR[256];

DeviceIoControl(hDevice, IOCTL_ADAPT_GET_FRIENDLY_NAME,
 FriendlyName, 256,
 FriendlyName, 256,
 &dwBytes, NULL);

delete[] FriendlyName;

6.12 IOCTL_ADAPT_GET_NUMBER_ENDPOINTS

IOCTL_ADAPT_GET_NUMBER_ENDP Previous Top Next

The IOCTL Interface 31

© 2011 Cypress Semiconductor

OINTS

Description

This command retrieves the number of endpoints enumerated by the current interface / alternate
interface setting.

A null pointer is passed as the lpInBuffer parameter to the DeviceIoControl() function. Zero is passed as
the nInBufferSize parameter.

The address of an unsigned character is passed as the lpOutBuffer parameter to the DeviceIoControl()
function. The size of the variable (1) is passed in the nOutBufferSize parameter.

Example

DWORD dwBytes = 0;
UCHAR endPts;

DeviceIoControl(hDevice, IOCTL_ADAPT_GET_NUMBER_ENDPOINTS,
 NULL, 0,
 &endPts, sizeof (endPts),

 &dwBytes, NULL);

6.13 IOCTL_ADAPT_GET_TRANSFER_SIZE

IOCTL_ADAPT_GET_TRANSFER_SIZE Previous Top Next

Description

This command retrieves the current transfer size for a given endpoint. The transfer size is not the same
as the MaxPacketSize for the endpoint. Rather, the transfer size is always an integral multiple of the
endpoint's MaxPacketSize.

A pointer to a SET_TRANSFER_SIZE_INFO structure is passed as both the lpInBuffer and lpOutBuffer
parameters to the DeviceIoControl() function. This structure must be pre-loaded with the address of the
endpoint of interest. Upon return, the structure will contain the transfer size of endpoint.

The size of the structure is passed in the nInBufferSize and nOutBufferSize parameters.

Example

DWORD BytesXfered;
SET_TRANSFER_SIZE_INFO SetTransferInfo;
SetTransferInfo.EndpointAddress = Address;

DeviceIoControl(hDevice, IOCTL_ADAPT_GET_TRANSFER_SIZE,
 &SetTransferInfo, sizeof (SET_TRANSFER_SIZE_INFO),

 &SetTransferInfo, sizeof (SET_TRANSFER_SIZE_INFO),

 &BytesXfered, NULL);

Cypress CyUsb.sys Programmer's Reference32

© 2011 Cypress Semiconductor

LONG transferSz = SetTransferInfo.TransferSize;

6.14 IOCTL_ADAPT_GET_USBDI_VERSION

IOCTL_ADAPT_GET_USBDI_VERSION Previous Top Next

Description

This command retrieves the version of the USB Host Controller Driver in BCD format.

A pointer to a 4-byte variable is passed as both the lpInBuffer and lpOutBuffer parameters to the
DeviceIoControl() function.

The size of the variable (4) is passed in the nInBufferSize and nOutBufferSize parameters.

Example

DWORD dwBytes = 0;
ULONG ver;

DeviceIoControl(hDevice, IOCTL_ADAPT_GET_USBDI_VERSION,
 &ver, sizeof (ver),

 &ver, sizeof (ver),

 &dwBytes, NULL);

6.15 IOCTL_ADAPT_RESET_PARENT_PORT

IOCTL_ADAPT_RESET_PARENT_POR
T

Previous Top Next

Description

This command resets the device, clearing any error or stall conditions. Pending data transfers are not
cancelled by this command.

A null pointer is passed as both the lpInBuffer and lpOutBuffer parameters to the DeviceIoControl()
function.

Example

DWORD dwBytes;

DeviceIoControl(hDevice, IOCTL_ADAPT_RESET_PARENT_PORT,
 NULL, 0,
 NULL, 0,
 &dwBytes, NULL);

The IOCTL Interface 33

© 2011 Cypress Semiconductor

6.16 IOCTL_ADAPT_RESET_PIPE

IOCTL_ADAPT_RESET_PIPE Previous Top Next

Description

This command resets an endpoint of the device, clearing any error or stall conditions on that endpoint.
Pending data transfers are not cancelled by this command.

The address of a single byte is passed as the lpInBuffer parameter to the DeviceIoControl() function.

A null pointer is passed as the lpOutBuffer parameter.

Example

DWORD dwBytes;
UCHAR Address = 0x82;

DeviceIoControl(hDevice, IOCTL_ADAPT_RESET_PIPE,
 &Address, sizeof (Address)

 NULL, 0,
 &dwBytes, NULL);

6.17 IOCTL_ADAPT_SELECT_INTERFACE

IOCTL_ADAPT_SELECT_INTERFACE Previous Top Next

Description

This command sets the alternate interface setting for the primary interface of the attached device.

A pointer to a byte indicating the alternate interface setting is passed as both the lpInBuffer and
lpOutBuffer parameters to the DeviceIoControl() function.

The length of the variable (1) is passed in the nInBufferSize and nOutBufferSize parameters.

Example

DWORD dwBytes = 0;
UCHAR alt = 2;

DeviceIoControl (hDevice, IOCTL_ADAPT_SELECT_INTERFACE,
 &alt, sizeof (alt),

 &alt, sizeof (alt),

 &dwBytes, NULL);

6.18 IOCTL_ADAPT_SEND_EP0_CONTROL_TRANSFER

IOCTL_ADAPT_SEND_EP0_CONTROL Previous Top Next

Cypress CyUsb.sys Programmer's Reference34

© 2011 Cypress Semiconductor

_TRANSFER

Description

This command sends a control request to the default Control endpoint, endpoint zero.

DeviceIoControl() is passed a pointer to a two-part structure as both the lpInBuffer and lpOutBuffer
parameters. This two-part structure contains a SINGLE_TRANSFER structure followed by a data buffer.

The SINGLE_TRANSFER structure contains all the parameters for the control request.

The buffer contains the transfer data.

Example

union {

struct {

UCHAR Recipient:5;
UCHAR Type:2;
UCHAR Direction:1;
} bmRequest;

UCHAR bmReq;
};

bmRequest.Recipient = 0; // Device

bmRequest.Type = 2; // Vendor

bmRequest.Direction = 1; // IN command (from Device to Host)

int iXmitBufSize = sizeof(SINGLE_TRANSFER) + bufLen; // The size of the two-part

structure

UCHAR *pXmitBuf = new UCHAR[iXmitBufSize]; // Allocate the memory

ZeroMemory(pXmitBuf, iXmitBufSize);

PSINGLE_TRANSFER pTransfer = (PSINGLE_TRANSFER)pXmitBuf; // The SINGLE_TRANSFER comes

first

pTransfer->SetupPacket.bmRequest = bmReq;
pTransfer->SetupPacket.bRequest = ReqCode;
pTransfer->SetupPacket.wValue = Value;
pTransfer->SetupPacket.wIndex = Index;
pTransfer->SetupPacket.wLength = bufLen;
pTransfer->SetupPacket.ulTimeOut = TimeOut / 1000;
pTransfer->Reserved = 0;
pTransfer->ucEndpointAddress = 0x00; // Control pipe

pTransfer->IsoPacketLength = 0;
pTransfer->BufferOffset = sizeof (SINGLE_TRANSFER);

pTransfer->BufferLength = bufLen;
DWORD dwReturnBytes;

DeviceIoControl (hDevice, IOCTL_ADAPT_SEND_EP0_CONTROL_TRANSFER,
 pXmitBuf, iXmitBufSize,
 pXmitBuf, iXmitBufSize,
 &dwReturnBytes, NULL);

The IOCTL Interface 35

© 2011 Cypress Semiconductor

// Copy data into buf

UCHAR *ptr = pXmitBuf + sizeof (SINGLE_TRANSFER);

memcpy(buf, ptr, dwReturnBytes);

6.19 IOCTL_ADAPT_SEND_NON_EP0_TRANSFER

IOCTL_ADAPT_SEND_NON_EP0_TRA
NSFER

Previous Top Next

Description

NOTE:
 With the release of CyUSB.sys version 1.5.503.0,

the faster
IOCTL_ADAPT_SEND_NON_EP0_DIRECT should
be used instead of this command.
IOCTL_ADAPT_SEND_NON_EP0_TRANSFER
remains supported only to provide driver
compatibility to existing applications that use it.

This IOCTL command is used to request Bulk, Interrupt or Isochronous data transfers across
corresponding USB device endpoints.

Regardless of whether the endpoint is an IN or an OUT endpoint, a pointer to a single data structure is
passed to DeviceIoControl() as both the lpInBuffer and lpOutBuffer parameters. The driver expects that
the pointer references a SINGLE_TRANSFER structure, followed by a data buffer. In the case of OUT
endpoints, the buffer is expected to contain the data bytes to be transmitted. In the case of an IN
endpoint, the buffer is expected to be the writeable memory for received data bytes.

Example

 PUCHAR CCyBulkEndPoint::BeginDataXfer(PCHAR

buf, LONG bufLen, OVERLAPPED *ov)

 {

 if (hDevice == INVALID_HANDLE_VALUE) return

NULL;

 int iXmitBufSize = sizeof (SINGLE_TRANSFER)

+ bufLen;

 PUCHAR pXmitBuf = new UCHAR[iXmitBufSize];

 ZeroMemory(pXmitBuf, iXmitBufSize);

 PSINGLE_TRANSFER pTransfer =
(PSINGLE_TRANSFER)pXmitBuf;

 pTransfer->Reserved = 0;

 pTransfer->ucEndpointAddress = Address;

 pTransfer->IsoPacketLength = 0;

 pTransfer->BufferOffset = sizeof

Cypress CyUsb.sys Programmer's Reference36

© 2011 Cypress Semiconductor

(SINGLE_TRANSFER);
 pTransfer->BufferLength = bufLen;

 // Copy buf into pXmitBuf

 UCHAR *ptr = (PUCHAR) pTransfer +
pTransfer->BufferOffset;

 memcpy(ptr, buf, bufLen);

 DWORD dwReturnBytes;

 DeviceIoControl(hDevice,
IOCTL_ADAPT_SEND_NON_EP0_TRANSFER,

 pXmitBuf,
iXmitBufSize,

 pXmitBuf,
iXmitBufSize,

 &dwReturnBytes, ov);

 return pXmitBuf;

 }

6.20 IOCTL_ADAPT_SEND_NON_EP0_DIRECT

IOCTL_ADAPT_SEND_NON_EP0_DIR
ECT

Previous Top Next

Description

This IOCTL is used to request Bulk, Interrupt or Isochronous data transfers across corresponding USB device
endpoints.

This IOCTL is only exposed by the CyUSB.sys driver version 1.5.503.0 or later. It optimizes throughput by using
separate buffers for the SINGLE_TRANSFER structure and the transfer data. (The CyAPI.lib class library, version
1.0.5.0, uses this command, instead of the slower IOCTL_ADAPT_SEND_NON_EP0_TRANSFER, if it detects a
capable driver.)
For CyUSB.sys driver version 1.07.000 or later, additional ISOC transfers can be performed such as the capability
to specify the current frame number (plus an optional frame offset) or simply set the frame number that the
transfer should begin on. To use these advanced features, a properly formatted ISO_ADV_PARAMS must be
properly initialized within the SINGLE_TRANSFER structure. See the definition of ISO_ADV_PARAMS for
implementation details.

The DeviceIoControl call requires two buffer parameters. For this command, the first buffer must contain a
properly initialized SINGLE_TRANSFER structure.

The SINGLE_TRANSFER fields of BufferOffset and BufferLength should be set to 0 for this command.

The second buffer is for the actual transfer data. For an OUT endpoint, this will contain the data headed to the
USB device. For an IN endpoint, this buffer will hold the data that is received from the device.

Special ISOC Constraints

The endpoint maximum transfer size and buffer length parameter must both be a multiple of the endpoint's
MaxPacketSize.

The IOCTL Interface 37

© 2011 Cypress Semiconductor

For ISOC transfers on a device operating at High speed, the following constraints apply to this
command:

 1) The endpoint transfer size must be a multiple of

the endpoint's MaxPacketSize * 8. (See
IOCTL_ADAPT_SET_TRANSFER_SIZE.)

 2) The buffer length parameter (bufLen in the below

examples) must also be a multiple of the endpoint's
MaxPacketSize * 8.

 Note: The above 2 constraints apply to all ISOC

transfers, regardless of speed, if using a version of
CyUSB.sys older than 1.7.0.0.

The SINGLE_TRANSFER structure must be followed by additional space sufficient to hold the
PACKET_INFO structures for the transfer (see examples #2 and #3, below).

Example #1 (Bulk and Interrupt endpoints)

 PUCHAR CCyUSBEndPoint::BeginDirectXfer

(PUCHAR buf, LONG bufLen, OVERLAPPED *ov)

 {

 if (hDevice == INVALID_HANDLE_VALUE)

return NULL;

 int iXmitBufSize = sizeof

(SINGLE_TRANSFER);

 PUCHAR pXmitBuf = new UCHAR[iXmitBufSize];

 ZeroMemory (pXmitBuf, iXmitBufSize);

 PSINGLE_TRANSFER pTransfer =
(PSINGLE_TRANSFER) pXmitBuf;

 pTransfer->ucEndpointAddress = Address;

 pTransfer->IsoPacketLength = 0;

 pTransfer->BufferOffset = 0;

 pTransfer->BufferLength = 0;

 DWORD dwReturnBytes;

 DeviceIoControl (hDevice,

 IOCTL_ADAPT_SEND_NON_EP0_DIRECT,

 pXmitBuf, iXmitBufSize,

 buf, bufLen,

 &dwReturnBytes, ov);

 // Note that this method leaves pXmitBuf

allocated. It will get deleted in

 // FinishDataXfer.

Cypress CyUsb.sys Programmer's Reference38

© 2011 Cypress Semiconductor

 LastError = GetLastError();

 return pXmitBuf;

 }

Example #2 (ISOC endpoints)

 PUCHAR CCyIsocEndPoint::BeginDirectXfer

(PUCHAR buf, LONG bufLen, OVERLAPPED *ov)

 {

 if (hDevice == INVALID_HANDLE_VALUE)

return NULL;

 int pkts = bufLen / MaxPktSize; // Number

of packets implied by bufLen & pktSize

 if (bufLen % MaxPktSize) pkts++;

 if (pkts == 0) return NULL;

 int iXmitBufSize = sizeof (SINGLE_TRANSFER)

+ (pkts * sizeof(ISO_PACKET_INFO));

 UCHAR *pXmitBuf = new UCHAR[iXmitBufSize];

 ZeroMemory (pXmitBuf, iXmitBufSize);

 PSINGLE_TRANSFER pTransfer =
(PSINGLE_TRANSFER) pXmitBuf;

 pTransfer->ucEndpointAddress = Address;

 pTransfer->IsoPacketOffset = sizeof

(SINGLE_TRANSFER);

 pTransfer->IsoPacketLength = pkts * sizeof

(ISO_PACKET_INFO);

 pTransfer->BufferOffset = 0;

 pTransfer->BufferLength = 0;

 DWORD dwReturnBytes = 0;

 DeviceIoControl (hDevice,

 IOCTL_ADAPT_SEND_NON_EP0_DIRECT,

 pXmitBuf, iXmitBufSize,

 buf, bufLen,

 &dwReturnBytes, ov);

 // Note that this method leaves pXmitBuf

allocated. It will get deleted in

 // FinishDataXfer.

 LastError = GetLastError();

 return pXmitBuf;

 }

The IOCTL Interface 39

© 2011 Cypress Semiconductor

Example #3 (ISOC endpoints – advanced / driver version >= 1.07.000)

 PUCHAR CCyIsocEndPoint::BeginDirectXfer

(PUCHAR buf, LONG bufLen, OVERLAPPED *ov)

 {

 if (hDevice == INVALID_HANDLE_VALUE)

return NULL;

 int pkts = bufLen / MaxPktSize; // Number

of packets implied by bufLen & pktSize

 if (bufLen % MaxPktSize) pkts++;

 if (pkts == 0) return NULL;

 int iXmitBufSize = sizeof (SINGLE_TRANSFER)

+ (pkts * sizeof(ISO_PACKET_INFO));

 UCHAR *pXmitBuf = new UCHAR[iXmitBufSize];

 ZeroMemory (pXmitBuf, iXmitBufSize);

 PSINGLE_TRANSFER pTransfer =
(PSINGLE_TRANSFER) pXmitBuf;

 pTransfer->ucEndpointAddress = Address;

 pTransfer->IsoPacketOffset = sizeof

(SINGLE_TRANSFER);

 pTransfer->IsoPacketLength = pkts * sizeof

(ISO_PACKET_INFO);

 pTransfer->IsoParams.isoId = USB_ISO_ID;

 pTransfer->IsoParams.isoCmd =

USB_ISO_CMD_ASAP;

 pTransfer->IsoParams.ulParam1 = 0;

 DWORD dwReturnBytes = 0;

 DeviceIoControl (hDevice,

 IOCTL_ADAPT_SEND_NON_EP0_DIREC
T,

 pXmitBuf, iXmitBufSize,

 buf, bufLen,

 &dwReturnBytes, ov);

 // Note that this method leaves pXmitBuf

allocated. It will get deleted in

 // FinishDataXfer.

 LastError = GetLastError();

 return pXmitBuf;

 }

Cypress CyUsb.sys Programmer's Reference40

© 2011 Cypress Semiconductor

6.21 IOCTL_ADAPT_SET_DEVICE_POWER_STATE

IOCTL_ADAPT_SET_DEVICE_POWER
_STATE

Previous Top Next

Description

This command sets the power state of the device.

A pointer to a ULONG variable (pwrState) is passed as both the lpInBuffer and lpOutBuffer parameters to
the DeviceIoControl() function.

The size of the pwrState variable (4) is passed in the nInBufferSize and nOutBufferSize parameters.

Valid values for the pwrState are:

1 => Power State D0 (Full On)
2 => Power State D1
3 => Power State D2
4 => Power State D3 (Full Asleep)

Example

// Put the device into full asleep (Device Power State D3)

DWORD dwBytes = 0;

ULONG pwrState = 4;

DeviceIoControl(hDevice, IOCTL_ADAPT_SET_DEVICE_POWER_STATE,

 &pwrState, sizeof (pwrState),

 &pwrState, sizeof (pwrState),

 &dwBytes, NULL);

6.22 IOCTL_ADAPT_SET_TRANSFER_SIZE

IOCTL_ADAPT_SET_TRANSFER_SIZE Previous Top Next

Description

This command sets the transfer size for a given endpoint. The transfer size is not the same as the
MaxPacketSize for the endpoint. Rather, the transfer size is always an integral multiple of the endpoint's
MaxPacketSize.

Small transfer sizes are memory efficient but result in multiple operations to effect a data transfer. Larger
transfer sizes are more wasteful of memory, but accomplish larger data transfers with fewer IO
transactions.

The IOCTL Interface 41

© 2011 Cypress Semiconductor

A pointer to a SET_TRANSFER_SIZE_INFO structure is passed as both the lpInBuffer and lpOutBuffer
parameters to the DeviceIoControl() function. This structure contains the address of the endpoint that is
to be changed and the new transfer size.

The size of the structure is passed in the nInBufferSize and nOutBufferSize parameters.

Example

DWORD BytesXfered;
SET_TRANSFER_SIZE_INFO SetTransferInfo;
SetTransferInfo.EndpointAddress = Address;
SetTransferInfo.TransferSize = 0x2000; // An 8 KB transfer size

DeviceIoControl(hDevice, IOCTL_ADAPT_SET_TRANSFER_SIZE,
 &SetTransferInfo, sizeof (SET_TRANSFER_SIZE_INFO),

 &SetTransferInfo, sizeof (SET_TRANSFER_SIZE_INFO),

 &BytesXfered, NULL);

7 CYIOCTL.H

typedef struct _SINGLE_TRANSFER Previous Top Next

Header
cyioctl.h

Description

A pointer to a SINGLE_TRANSFER structure is passed to the driver for the
IOCTL_ADAPT_SEND_NON_EP0_TRANSFER and
IOCTL_ADAPT_SEND_EP0_CONTROL_TRANSFER commands.

The structure is defined as:

 typedef struct _SINGLE_TRANSFER {

union {

 SETUP_PACKET SetupPacket;
 ISO_ADV_PARAMS IsoParams;
 };

 UCHAR Reserved;

 UCHAR ucEndpointAddress;

 ULONG NtStatus;

 ULONG UsbdStatus;

 ULONG IsoPacketOffset;

 ULONG IsoPacketLength;

 ULONG BufferOffset;

Cypress CyUsb.sys Programmer's Reference42

© 2011 Cypress Semiconductor

 ULONG BufferLength;

 } SINGLE_TRANSFER, *PSINGLE_TRANSFER;

Members

 SetupPacket

 Contains required parameters for Control Endpoint

transfers,

 IsoParams

 Contains optional parameters for Isochronous

Endpoint transfers.

 reserved

 Reserved. Should be set to 0.

 ucEndpointAddress

 Specified the address of the device endpoint in

which the transfer will occur.

 NtStatus

 NTSTATUS values that are returned by the driver.

 UsbdStatus

 USB_STATUS_XXX codes returned from the host

controller driver.

 IsoPacketOffset

 Specifies the byte offset from the beginning of the

structure to an IsoPacket list.

 IsoPacketLength

 The length, in bytes, of the IsoPacket list specified

at offset IsoPacketOffset.

CYIOCTL.H 43

© 2011 Cypress Semiconductor

 BufferOffset

 Specifies the byte offset from the beginning of the

structure to a transfer buffer.

 BufferLength

 The length, in bytes, of the transfer buffer at offset

BufferOffset.

7.1 ISO_ADV_PARAMS

typedef struct _ISO_ADV_PARAMS Previous Top Next

Header
cyioctl.h

Description

ISO_ADV_PARAMS is part of the a SINGLE_TRANSFER structure. It contains advanced parameters for
Isochronous endpoint transfers when sending the IOCTL_ADAPT_SEND_NON_EP0_TRANSFER and
IOCTL_ADAPT_SEND_NON_EP0_DIRECT commands.

The structure is defined as:

 typedef struct _ISO_ADV_PARAMS {

 USHORT isoId;

 USHORT isoCmd;

 ULONG ulParam1;

 ULONG ulParam2;

 } ISO_ADV_PARAMS, *PISO_ADV_PARAMS;

Defines

 #define USB_ISO_ID

0x4945

 #define USB_ISO_CMD_ASAP
0x8000

 #define USB_ISO_CMD_CURRENT_FRAME
0x8001

 #define USB_ISO_CMD_SET_FRAME
0x8002

Members

Cypress CyUsb.sys Programmer's Reference44

© 2011 Cypress Semiconductor

 isoId

 ISO_ADV_PARAMS structure identifier must be set to

USB_ISO_ID.

 isoCmd

 Specifies one of the following types of Isoch transfers:

 USB_ISO_CMD_ASAP

 If no transfers have been submitted to the pipe since the

pipe was opened or last reset, the transfer to begin on
the next frame. Otherwise, the transfer will begin on the
first frame following all currently queued requests for the
pipe.

 USB_ISO_CMD_CURRENT_FRAME

 Causes the transfer to begin on the current frame

number obtained from the host controller driver, plus an
optional offset specified in the ulParam1 field.

 USB_ISO_CMD_SET_FRAME

 Causes the transfer to begin on the frame number

specified in the ulParam1 field.

 ulParam1

 If isoCMD is set to USB_ISO_CMD_ASAP, when the

request is returned by the driver this field will contain
the frame number that the transfer began on.

 If isoCMD is set to
USB_ISO_CMD_CURRENT_FRAME, this field
contains the offset from the current frame number that
this transfer will begin on.

 If isoCMD is set to USB_ISO_CMD_SET_FRAME, this
field contains the frame number that this transfer will
begin on.

 ulParam2

 Reserved. Must be set to 0.

CYIOCTL.H 45

© 2011 Cypress Semiconductor

7.2 SINGLE_TRANSFER

typedef struct _SINGLE_TRANSFER Previous Top Next

Header
cyioctl.h

Description

A pointer to a SINGLE_TRANSFER structure is passed to the driver for the
IOCTL_ADAPT_SEND_NON_EP0_TRANSFER and
IOCTL_ADAPT_SEND_EP0_CONTROL_TRANSFER commands.

The structure is defined as:

 typedef struct _SINGLE_TRANSFER {

union {

 SETUP_PACKET SetupPacket;
 ISO_ADV_PARAMS IsoParams;
 };

 UCHAR Reserved;

 UCHAR ucEndpointAddress;

 ULONG NtStatus;

 ULONG UsbdStatus;

 ULONG IsoPacketOffset;

 ULONG IsoPacketLength;

 ULONG BufferOffset;

 ULONG BufferLength;

 } SINGLE_TRANSFER, *PSINGLE_TRANSFER;

Members

 SetupPacket

 Contains required parameters for Control Endpoint

transfers,

 IsoParams

 Contains optional parameters for Isochronous

Endpoint transfers.

 reserved

Cypress CyUsb.sys Programmer's Reference46

© 2011 Cypress Semiconductor

 Reserved. Should be set to 0.

 ucEndpointAddress

 Specified the address of the device endpoint in

which the transfer will occur.

 NtStatus

 NTSTATUS values that are returned by the driver.

 UsbdStatus

 USB_STATUS_XXX codes returned from the host

controller driver.

 IsoPacketOffset

 Specifies the byte offset from the beginning of the

structure to an IsoPacket list.

 IsoPacketLength

 The length, in bytes, of the IsoPacket list specified

at offset IsoPacketOffset.

 BufferOffset

 Specifies the byte offset from the beginning of the

structure to a transfer buffer.

 BufferLength

 The length, in bytes, of the transfer buffer at offset

BufferOffset.

7.3 SETUP_PACKET

typedef struct _SETUP_PACKET Previous Top Next

Header
cyioctl.h

CYIOCTL.H 47

© 2011 Cypress Semiconductor

Description

A SETUP_PACKET is part of the a SINGLE_TRANSFER structure. It contains important parameters for
Control Endpoint transfers when sending the IOCTL_ADAPT_SEND_EP0_TRANSFER command.

The structure is defined as:

 typedef struct _SETUP_PACKET {

 union {

 BM_REQ_TYPE bmReqType;

 UCHAR bmRequest;

 };

 UCHAR bRequest;

 union {

 WORD_SPLIT wVal;

 USHORT wValue;

 };

 union {

 WORD_SPLIT wIndx;

 USHORT wIndex;

 };

 union {

 WORD_SPLIT wLen;

 USHORT wLength;

 };

 ULONG ulTimeOut;

 } SETUP_PACKET, *PSETUP_PACKET;

7.4 SET_TRANSFER_SIZE_INFO

typedef struct
_SET_TRANSFER_SIZE_INFO

Previous Top

Header
cyioctl.h

Description

A pointer to a SET_TRANSFER_SIZE_INFO structure is passed to the driver for the
IOCTL_ADAPT_GET_TRANSFER_SIZE and IOCTL_ADAPT_SET_TRANSFER_SIZE commands.

Cypress CyUsb.sys Programmer's Reference48

© 2011 Cypress Semiconductor

The structure is defined as:

 typedef struct _SET_TRANSFER_SIZE_INFO {

 UCHAR EndpointAddress;

 ULONG TransferSize;

 } SET_TRANSFER_SIZE_INFO,
*PSET_TRANSFER_SIZE_INFO;

Index 49

© 2011 Cypress Semiconductor

Index
- • -
• 4

- C -
Compatible with any USB 2.0 compliant device 4

- S -
Supports automatic play-back of control transfer
scripts at device startup 4

Supports Control

Interrupt and Isochronous endpoints 4

Supports customizable driver GUID without re-building
the driver 4

Supports high bandwidth data transfers passing
multiple packets per uframe 4

Supports multiple USB devices connected at once
4

Supports USB Remote Wake-up 4

Supports Windows PnP and Power Management level
S4 4

- W -
WHQL Certified (not signed) 4

Windows Driver Model (WDM) compliant 4

	Driver Overview
	Features Not Supported
	Modifying CyUSB.INF
	Matching Devices to the Driver
	Windows 2000
	Windows XP
	Windows Vista and 7

	Reinstalling the Driver
	The IOCTL Interface
	Getting a Handle to the Driver
	IOCTL_ADAPT_ABORT_PIPE
	IOCTL_ADAPT_CYCLE_PORT
	IOCTL_ADAPT_GET_ADDRESS
	IOCTL_ADAPT_GET_ALT_INTERFACE_SETTING
	IOCTL_ADAPT_GET_CURRENT_FRAME
	IOCTL_ADAPT_GET_DEVICE_NAME
	IOCTL_ADAPT_GET_DEVICE_POWER_STATE
	IOCTL_ADAPT_GET_DEVICE_SPEED
	IOCTL_ADAPT_GET_DRIVER_VERSION
	IOCTL_ADAPT_GET_FRIENDLY_NAME
	IOCTL_ADAPT_GET_NUMBER_ENDPOINTS
	IOCTL_ADAPT_GET_TRANSFER_SIZE
	IOCTL_ADAPT_GET_USBDI_VERSION
	IOCTL_ADAPT_RESET_PARENT_PORT
	IOCTL_ADAPT_RESET_PIPE
	IOCTL_ADAPT_SELECT_INTERFACE
	IOCTL_ADAPT_SEND_EP0_CONTROL_TRANSFER
	IOCTL_ADAPT_SEND_NON_EP0_TRANSFER
	IOCTL_ADAPT_SEND_NON_EP0_DIRECT
	IOCTL_ADAPT_SET_DEVICE_POWER_STATE
	IOCTL_ADAPT_SET_TRANSFER_SIZE

	CYIOCTL.H
	ISO_ADV_PARAMS
	SINGLE_TRANSFER
	SETUP_PACKET
	SET_TRANSFER_SIZE_INFO

