NEXCOM
MiniPCle NISK-NVRAM

Library User Manual

Manual Rev.: V0.4

Revision Date: Feb. 03rd, 2015

NECOM

Revise note:

Ver Description

V0.1 2015/01/27:
V0.2 2015/01/30:
V0.3 2015/02/02:
V0.4 2015/02/03:

Contents

NEXCOM ...ttt ettt ettt ettt e bt e s e bt e sab e sab et e sb b e e sab e e sttt e e eabeeesmbeesabeeebaeenaneas
REVISE NOTEI Leiiiiiiiiiei e
1. NISK-NVRAM LiDrary OVEIVIEWuuuuuuuuuruiiriiiiririrsnnnnnnnnensssssssrssmrensnnnnnnnnnnnnnsne
1.1. INEFOAUCTION e e e s
1.2. (0] o1 = 1 1 To) o IV] =1 o 4 SO PPPPPPPPRPR
1.3. Principles of Programming.....ccccccccccuuuuuiiiiiiiiit e ae e

2. API REFEIENCE ..cii ittt e et e s e s e e snreee e aans
2.1. APTOVEIVIEW ...ttt rrae e e e e
2.2. Functions for INitializationc..cooviiie i e
22,1, NSK_DEVICEINTE..ccitiiiiiieiiieeiit ettt ettt ettt et s e s b e e naeeas
2.2.2. NSK_DEVICECIOSE. ..ceiiiiiiiiiiiiiiiiieie ettt e e e e e e e e e e e e rree e e e eeeeaaaaaes

2.3. Device INformation FUNCLIONScccovviiiiiiiiiieiiiiee e e
2.3.1. NSK_GetDeVIiCERAMSIZE ...iviiiiiiieiiiiiiie et e e e e e eaaee
2.3.2. NSK_GetDEVICECOUNT ..uuvtuiiieeeeeiieiiiiiiiieie s e s vtiiees e s e e e et eeeaaraasss e s s s saaannssseeaeennnns
2.3.3. NSK_GetGetDevicelnfo.....cccccceiiiiiiiii e,

2.4, REAA/WIITE FUNCHIONS. . .uetiieeiiiiiiitiietiiteerees s saaaabbaberaasbassssssssssssssssssssssnrnnns
2.4.1. NSK_WriteDataTORAM ...uuiiiiiiiiiiiiiiiiiciee i e e e e e e eeeaaees
2.4.2. NSK_ReadDataFromRamcccceiiiiiiiiiiii e,

2.5. SAVE/LOAA FUNCLIONS...cciiiiiiiiiiiiieieiie ettt ettt e e e ettt et e et e e e e eeeeeeees
2.5.1. NSK_SaveDeviceDataToFilecccccceeeiiiiiiii e,
2.5.2. NSK_LoadFileToDeviceData........ccccceeeeiieieieeeeeeeeeeeeeeeeeee e,

2.6. Device Version FUNCEIONS........cuuviiiiiiiiiiiiic e
2.6.1. NSK_GetFirmwarEVersionccuuuuuuiiiieeieiiiiiiiieeeeeeeeeeiiiiinne e e eeaeeeneen s eeeseeesnnnes
2.6.2. NSK_GetHardwareVersion........ccccceeieiiiii i,
2.6.3. NSK_GEtDrIVEIVEISION ..uuuiieieiiiiiiiiiiiiiiie ettt e e e e eeevariisss s e e e e e e eaasseeeeaeeennnes

2.6.4. NSK_GEtDrIVEIVEISION ..uuuiieieiiiiiiiiiiiiiiiee e eeeeie s e e e e eeevarisss s e s e e aesaaessseeaeeennnes

.2

3.

2.7.

Error Codesovvvvvuviiiiiiiiciiiiiecces

Programming examplecccceevveeveenneennen.

3.1

3.1.1.

3.1.2.

Visual Studio programming exampleoooovviiiiiiiiiiiiiiie e

How to use the NiskNVRAM Library

Programming example

NECOM

1. NISK-NVRAM Library Overview

1.1. Introduction

NISK-NVRAM Library is a programming interface for controlling Mini PCle
NISK-NVRAM devices.

Following figure shows the system architecture of NISK-NVRAM:

Programming languages: Utility / Tools: Sample programs:
@ C/C++ € Nex-RW.exe 4 Visual studio 2010
€ Visual basic
¢ VB.NET
& CH
/
NISK-NVRAM Library (APIs)
(NiskNvram.dll)

" ZS

Win32 user layer

Win32 kernel layer

PC/ IPC platform

NISK-NVRAM system architecture

Sample programs for NISK-NVRAM please refer to Chapter.3 as a programming
reference.

NECOM

1.2. Operation system

NISK-NVRAM library (NiskNVRAM.dIl and device driver) supports following operating
system:
Microsoft® Windows® 7 (32 bit)

NECOM

The basic NISK-NVRAM library programming flow chart is as following figure.

1.3. Principles of Programming

NSK_Devicelnit()

v

NSK_WriteDataToRam()

NSK_ReadDataFromRam()
(...other NSK APIs)

v

NSK_DeviceClose()

1. Before using the Nisk NVRAM functions, please execute the initial function
NSK_Devicelnit() first.

2. After finishing programming, please execute the close function NSK_DeviceClose()
to close the devices.

3. This library (device driver) supports up to 16 NISK-NVRAM devices in one
machine.

4. The maximum size of NVRAM memory on the device is 1 Mbytes(1048576 bytes).

NECOM

2. API Reference

2.1. API Overview

All APIs of NiskNVRAM Library are listed. The definition of API is located at the
header file “NiskNVRAM.h”.

Function Name

Description

Initialization Functions

NSK_Devicelnit

Nisk NVRAM initial function

NSK DeviceClose

Nisk NVRAM close function

Device Information Functions

NSK_ GetDeviceRamSize

Get the total size of Nisk NVRAM

NSK_GetDeviceCount

Get how many devices of Nisk NVRAM

NSK_GetDevicelnfo

Get Nisk NVRAM Bus/Device/Function number

Read/Write Functions

NSK_ WriteDataToRam

Copy data from user data to Nisk NVRAM

NSK_ ReadDataFromRam

Copy data from Nisk NVRAM to user data

Save/Load Functions

NSK SaveDeviceDataToFile

Save the data of device to file

NSK LoadFileToDeviceData

Load the data from file to device

Device

Version Functions

NSK_ GetFirmwareVersion

Get Nisk NVRAM Firmware Version

NSK_ GetHardwareVersion

Get Nisk NVRAM Hardware Version

NSK_GetDriverVersion

Get Nisk NVRAM Driver Version

NSK GetLibraryVersion

Get Nisk NVRAM dll Version

NECOM

The C/C++ data types for APl is defined in “nex_type.h” and listed as follows:

Type C/C++ Primitive format Byte Value Range
Length
BOOL_T Int Boolean 4 O:False, 1:True
us. T unsigned char Unsigned Integer | 1 0~ 255
uie T unsigned short Unsigned Integer | 2 0~ 65535
Us2 T unsigned int Unsigned Integer | 4 0~ 4294967295
ued4 T unsigned __int64 Unsigned Integer | 8 o~
18446744073709551615
18T char Signed Integer 1 -128 ~ 127
116 T short Signed Integer -32768 ~ 32767
132.T int Signed Integer 4 -2147483648 ~
2147483647
164_T __inte4d Signed Integer 8 -9223372036854775808 ~
9223372036854775807
F32. T float Floating-point 4 IEEE-754, accurate to the
number seventh decimal place
F64 T double Double-precision | 8 IEEE-754, accurate to the
floating-point fifteenth decimal place
number
RTN_ERR int Error code 4 -2147483648 ~

2147483647

2.2. Functions for Initialization
2.2.1. NSK_Devicelnit

Nisk NVRAM initial function

C/C++ Syntax:
RTN_ERR NSK_Devicelnit();

Parameters:

<no Parameters>

Returned Values:

Error Code is returned.
“RETURN_SUCCESS” (0) isreturned if function call is successful, while “Error Code”
is returned when failed. The Error code is defined as “ERROR_XXXX" (non-zero) in
header file “NiskNVRAM.h”.

Usage:

This function is used for initializing the library of NISK-NVRAM.
Attention! The function has to be the first executed function before executing all
other functions of NISK-NVRAM library.

Reference:
NSK_DeviceClose();

2.2.2. NSK_DeviceClose

Nisk NVRAM close function

C/C++ Syntax:
RTN_ERR NSK_DeviceClose();

Parameters:

<no Parameters>

Returned Values:

Error Code is returned.
“RETURN_SUCCESS” (0) isreturned if function call is successful, while “Error Code”
is returned when failed. The Error code is defined as “ERROR_XXXX" (non-zero) in
header file “NiskNVRAM.h”.

Usage:

This function is used for closing the library of NISK-NVRAM. Typically, this APl is
execute at the end of application to release the system resources which allocated by
NISK-NVRAM library.

Attention! The function has to be the last executed function after executing all other
functions of NISK-NVRAM library.

Reference:
NSK_Devicelnit();

2.3. Device Information Functions
2.3.1. NSK_GetDeviceRamSize

Get the total size of Nisk NVRAM

C/C++ Syntax:
RTN_ERR NSK_GetDeviceRamSize(U32_T *size);

Parameters:
U32 T *Size: Size is a pointer of U32_T. After executing this function, the total
size of the device of Nisk NVRAM would be updated in this parameter.

Returned Values:

Error Code is returned.
“RETURN_SUCCESS” (0) isreturned if function call is successful, while “Error Code”
is returned when failed. The Error code is defined as “ERROR_XXXX" (non-zero) in
header file “NiskNVRAM.h”.

Usage:
This function is used for getting the total size of the device of Nisk NVRAM.
Attention! The function could only be executed after calling the NSK_Devicelnit

function.

Reference:
NSK_Devicelnit();

2.3.2. NSK_GetDeviceCount

Get how many devices of Nisk NVRAM on a machine

C/C++ Syntax:
RTN_ERR NSK_GetDeviceCount(U32_T *count);

Parameters:
U32_T *count: count is a pointer of U32_T. After executing this function,
the total count of the device of Nisk NVRAM would be updated in this
parameter.

Returned Values:

Error Code is returned.
“RETURN_SUCCESS” (0) isreturned if function call is successful, while “Error Code”
is returned when failed. The Error code is defined as “ERROR_XXXX" (non-zero) in
header file “NiskNVRAM.h”.

Usage:

This function is used for getting the total count of the device of Nisk NVRAM on
a machine.
Attention! The function could only be executed after calling the NSK_Devicelnit

function.

Reference:
NSK_Devicelnit();

NECOM

2.3.3. NSK_GetGetDevicelnfo

Get Bus/Device/Function number of Nisk NVRAM

C/C++ Syntax:
RTN_ERR NSK_GetDevicelnfo(U32_T Device_ld, DEVICE_INFO_T *plnfo);

Parameters:

U32_T Deviceld : DevicelD is the ID of the device of Nisk NVRAM that determines
which device of Nisk NVRAM you want to control. Deviceld starts from
0, and depends on the count of the devices of Nisk NVRAM. For
example, if there is only one device of Nisk NVRAM on a machine,
DevicelD would be 0. If there are two device of Nisk NVRAM on this
machine, DevicelD might be 0 or 1.
The range of “Deviceld” is 0~ 15

DEVICE_INFO_T *plInfo : pinfois a pointer of struct DEVICE_INFO_T. Depending
on the first input parameter “ Deviceld”, after executing this function,
Bus number, Device number and function number of the device of
Nisk NVRAM would be updated in this parameter.

typedef struct

{
us T DevicelD; // Return 1D of the device
us T DeviceBusNum; // Return (PCl) bus number
us T DeviceDevNum; // Return (PCl) dev number
us T DeviceFuncNum; // Return (PCl) function
number

IDEVICE_INFO_T;

Returned Values:

Error Code is returned.
“RETURN_SUCCESS” (0) isreturned if function call is successful, while “Error Code”
is returned when failed. The Error code is defined as “ERROR_XXXX" (non-zero) in
header file “NiskNVRAM.h”.

NE{COM
Usage:

This function is used for getting the driver version of the device of Nisk NVRAM.
Attention! The function could only be executed after calling the NSK_Devicelnit
function.

Reference:

NSK_Devicelnit();

NECOM

2.4. Read/Write Functions
2.4.1. NSK_WriteDataToRam

Copy data from user data to Nisk NVRAM

C/C++ Syntax:
RTN_ERR NSK_WriteDataToRam(U32_T Deviceld, U32_T Offset, U32_T
ByteOfLength, U8 T *Data);

Parameters:

U32_T Deviceld : DevicelD is the ID of the device of Nisk NVRAM that determines
which device of Nisk NVRAM you want to control. Deviceld starts from
0, and depends on the count of the devices of Nisk NVRAM. For
example, if there is only one device of Nisk NVRAM on a machine,
DevicelD would be 0. If there are two device of Nisk NVRAM on this
machine, DevicelD might be 0 or 1.
The range of “Deviceld” is 0~ 15

U32 T Offset: Offset from start address of NVRAM memory. The unit is byte.
The range of “Offset” is 0 ~ (MAX_NVRAM_SIZE - 1),
MAX_NVRAM_SIZE is 1048576.

U32_T ByteOfLength: ByteOfLength is the length from the offset of the start
address that has to be written from user data to the device of Nisk
NVRAM. The unit is byte.
The range of “ByteOfLength” is 1 ~ MAX_NVRAM_SIZE,
MAX_NVRAM_SIZE is 1048576.
Attention! ByteOfLength has to be equal or smaller than the residual size, the
residual size is (MAX_NVRAM_SIZE - Offset).

U8 T *Data: Datais a pointer of U8 _T, which pointed to the start address of
the user data.

Returned Values:

Error Code is returned.
“RETURN_SUCCESS” (0) isreturned if function call is successful, while “Error Code”
is returned when failed. The Error code is defined as “ERROR_XXXX" (non-zero) in
header file “NiskNVRAM.h”.

NE{COM
Usage:

This function is used for copying data from user data to the device of Nisk

NVRAM.
Attention! The function could only be executed after calling the NSK_Devicelnit

function.

Reference:
NSK_Devicelnit();NSK_ReadDataFromRam()

NECOM

2.4.2. NSK_ReadDataFromRam

Copy data from Nisk NVRAM to user data

C/C++ Syntax:
RTN_ERR NSK_ReadDataFromRam(U32_T Deviceld, U32_T Offset, U32_ T
ByteOfLength, U8 T *Data);

Parameters:

U32_T Deviceld : DevicelD is the ID of the device of Nisk NVRAM that determines
which device of Nisk NVRAM you want to control. Deviceld starts from
0, and depends on the count of the devices of Nisk NVRAM. For
example, if there is only one device of Nisk NVRAM on a machine,
DevicelD would be 0. If there are two device of Nisk NVRAM on this
machine, DevicelD might be 0 or 1.
The range of “Deviceld” is 0~ 15

U32_T Offset: Offset from start address of NVRAM memory. The unit is byte.
The range of “ByteOfLength” is 1 ~ MAX_NVRAM_SIZE,
MAX_NVRAM_SIZE is 1048576.

U32_T ByteOfLength: ByteOfLength is the length from the offset of the start
address that has to be read from the device of Nisk NVRAM to user
data. The unit is byte.

The range of “ByteOfLength” is 1 ~ MAX_NVRAM_SIZE,
MAX_NVRAM_SIZE is 1048576.
Attention! ByteOfLength has to be equal or smaller than the residual size, the
residual size is (MAX_NVRAM_SIZE - Offset).

U8 T *Data: Datais a pointer of U8 _T, which pointed to the start address of
the user data.

Returned Values:

Error Code is returned.
“RETURN_SUCCESS” (0) isreturned if function call is successful, while “Error Code”
is returned when failed. The Error code is defined as “ERROR_XXXX" (non-zero) in
header file “NiskNVRAM.h”.

NE{COM
Usage:

This function is used for copying data from the device of Nisk NVRAM to user

data.
Attention! The function could only be executed after calling the NSK_Devicelnit

function.

NECOM

2.5. Save/Load Functions
2.5.1. NSK_SaveDeviceDataToFile

Save the data of device to file

C/C++ Syntax:
RTN_ERR FNTYPE NSK_SaveDeviceDataToFile(U32_T Deviceld, I8_T* save_file);

Parameters:

U32_T Deviceld : DevicelD is the ID of the device of Nisk NVRAM that determines
which device of Nisk NVRAM you want to control. Deviceld starts from
0, and depends on the count of the devices of Nisk NVRAM. For
example, if there is only one device of Nisk NVRAM on a machine,
DevicelD would be 0. If there are two device of Nisk NVRAM on this
machine, DevicelD might be 0 or 1.
The range of “Deviceld” is 0~ 15

I8 T* save file: save_fileis a pointer of I8 _T, pointed to a string which is the
directory of the file has to be saved. Note that the filename extension
has to be “.nrw”. Ex. "C:\\test_data.nrw"

Returned Values:

Error Code is returned.
“RETURN_SUCCESS” (0) isreturned if function call is successful, while “Error Code”
is returned when failed. The Error code is defined as “ERROR_XXXX" (non-zero) in
header file “NiskNVRAM.h”.

Reference:
NSK_LoadFileToDeviceData();

Usage:

This function is used for saving data (data byte 0 ~1048575) from the device of
Nisk NVRAM to a file(.nrw).
Attention! The function could only be executed after calling the NSK_Devicelnit
function.

NECOM

2.5.2. NSK_LoadFileToDeviceData

Load the data from file to device

C/C++ Syntax:
RTN_ERR FNTYPE NSK_LoadFileToDeviceData(U32_T Deviceld, I8 T* load_file);

Parameters:

U32_T Deviceld : DevicelD is the ID of the device of Nisk NVRAM that determines
which device of Nisk NVRAM you want to control. Deviceld starts from
0, and depends on the count of the devices of Nisk NVRAM. For
example, if there is only one device of Nisk NVRAM on a machine,
DevicelD would be 0. If there are two device of Nisk NVRAM on this
machine, DevicelD might be 0 or 1.
The range of “Deviceld” is 0~ 15

I8 T* load_file: load_file is a pointer of I8_T, pointed to a string which is the
directory of the file has to be loaded. Note that the filename extension

has to be “.nrw”. Ex. "C:\\test_data.nrw"

Returned Values:

Error Code is returned.
“RETURN_SUCCESS” (0) isreturned if function call is successful, while “Error Code”
is returned when failed. The Error code is defined as “ERROR_XXXX" (non-zero) in
header file “NiskNVRAM.h”.

Reference:
NSK_SaveDeviceDataToFile();

Usage:

This function is used for loading data (data byte 0 ~1048575) from a file(.nrw) to
the device of Nisk NVRAM.
Attention! The function could only be executed after calling the NSK_Devicelnit

function.

2.6. Device Version Functions
2.6.1. NSK_GetFirmwareVersion

Get Nisk NVRAM Firmware Version

C/C++ Syntax:
RTN_ERR NSK_GetFirmwareVersion(U32_T Deviceld, U32_T *version);

Parameters:

U32_T Deviceld : DevicelD is the ID of the device of Nisk NVRAM that determines
which device of Nisk NVRAM you want to control. Deviceld starts from
0, and depends on the count of the devices of Nisk NVRAM. For
example, if there is only one device of Nisk NVRAM on a machine,
DevicelD would be 0. If there are two device of Nisk NVRAM on this
machine, DevicelD might be 0 or 1.
The range of “Deviceld” is 0 ~ 15.

U32_T *Version : Version is a pointer of U32_T. After executing this function, the
firmware version of the device of Nisk NVRAM would be updated in

this parameter.

Returned Values:

Error Code is returned.
“RETURN_SUCCESS” (0) isreturned if function call is successful, while “Error Code”
is returned when failed. The Error code is defined as “ERROR_XXXX" (non-zero) in
header file “NiskNVRAM.h”.

Usage:

This function is used for getting the firmware version of the device of Nisk
NVRAM.
Attention! The function could only be executed after calling the NSK_Devicelnit

function.

Reference:
NSK_Devicelnit();
NSK_GetHardwareVersion();
NSK_GetDriverVersion();
NSK_GetLibraryVersion();

NECOM

2.6.2. NSK_GetHardwareVersion

Get Nisk NVRAM Hardware Version

C/C++ Syntax:
RTN_ERR NSK_GetHardwareVersion(U32_T Deviceld, U32_T *version);

Parameters:

U32_T Deviceld : DevicelD is the ID of the device of Nisk NVRAM that determines
which device of Nisk NVRAM you want to control. Deviceld starts from
0, and depends on the count of the devices of Nisk NVRAM. For
example, if there is only one device of Nisk NVRAM on a machine,
DevicelD would be 0. If there are two device of Nisk NVRAM on this
machine, DevicelD might be 0 or 1.
The range of “Deviceld” is 0 ~ 15.

U32_T *Version : Version is a pointer of U32_T. After executing this function, the
hardware version of the device of Nisk NVRAM would be updated in
this parameter.

Returned Values:

Error Code is returned.
“RETURN_SUCCESS” (0) isreturned if function call is successful, while “Error Code”
is returned when failed. The Error code is defined as “ERROR_XXXX" (non-zero) in
header file “NiskNVRAM.h”.

Usage:

This function is used for getting the hardware version of the device of Nisk
NVRAM.
Attention! The function could only be executed after calling the NSK_Devicelnit

function.

Reference:
NSK_Devicelnit();
NSK_GetFirmwareVersion();
NSK_GetDriverVersion();
NSK_GetLibraryVersion();

NECOM

2.6.3. NSK_GetDriverVersion

Get Nisk NVRAM Driver Version

C/C++ Syntax:
RTN_ERR NSK_GetDriverVersion(U32_T Deviceld, U32_T *version);

Parameters:

U32_T Deviceld : DevicelD is the ID of the device of Nisk NVRAM that determines
which device of Nisk NVRAM you want to control. Deviceld starts from
0, and depends on the count of the devices of Nisk NVRAM. For
example, if there is only one device of Nisk NVRAM on a machine,
DevicelD would be 0. If there are two device of Nisk NVRAM on this
machine, DevicelD might be 0 or 1.
The range of “Deviceld” is 0 ~ 15.

U32_T *Version : Version is a pointer of U32_T. After executing this function, the
driver version of the device of Nisk NVRAM would be updated in this
parameter.

Returned Values:

Error Code is returned.
“RETURN_SUCCESS” (0) isreturned if function call is successful, while “Error Code”
is returned when failed. The Error code is defined as “ERROR_XXXX" (non-zero) in

header file “NiskNVRAM.h”.

Usage:
This function is used for getting the driver version of the device of Nisk NVRAM.
Attention! The function could only be executed after calling the NSK_Devicelnit

function.

Reference:
NSK_Devicelnit();
NSK_GetFirmwareVersion();
NSK_GetHardwareVersion();
NSK_GetLibraryVersion();

2.6.4. NSK_GetDriverVersion

Get Nisk NVRAM Library Version

C/C++ Syntax:
RTN_ERR NSK_GetLibraryVersion(U32_T Deviceld, U32_T *version);

Parameters:

U32_T Deviceld : DevicelD is the ID of the device of Nisk NVRAM that determines
which device of Nisk NVRAM you want to control. Deviceld starts from
0, and depends on the count of the devices of Nisk NVRAM. For
example, if there is only one device of Nisk NVRAM on a machine,
DevicelD would be 0. If there are two device of Nisk NVRAM on this
machine, DevicelD might be 0 or 1.
The range of “Deviceld” is 0~ 15

U32_T *Version : Version is a pointer of U32_T. After executing this function, the
Library(dll) version of the device of Nisk NVRAM would be updated in

this parameter.

Returned Values:

Error Code is returned.
“RETURN_SUCCESS” (0) isreturned if function call is successful, while “Error Code”
is returned when failed. The Error code is defined as “ERROR_XXXX" (non-zero) in
header file “NiskNVRAM.h”.

Usage:

This function is used for getting the Library(dll) version of the device of Nisk
NVRAM.
Attention! The function could only be executed after calling the NSK_Devicelnit
function.
Reference:

NSK_Devicelnit();

NSK_GetFirmwareVersion();

NSK_GetHardwareVersion();

NSK_GetDriverVersion();

2.7. Error Codes

NECOM

Symbol Code Description

RETURN_SUCCESS 0 Function call successfully

ERROR READ_OFFSET SIZE O0xFFFFFFF0 Read size illegal

ERROR _WRITE OFFSET SIZE OxFFFFFFF1 Write size illegal

ERROR NO INITIAL OxFFFFFFF2 No initial function called before

ERROR INVALID HANDLE VALUE OxFFFFFFF3 Invalid handle value

ERROR_INITIAL MORE THAN ONETIME | OxFFFFFFF4 Initial function called more than
one time

ERROR INITIAL INTERNAL ERR OxFFFFFFF5 Initial internal error

ERROR NO THIS DEVICE OxFFFFFFF6 Invalid Device id

ERROR FILE OPEN OxFFFFFFF7 Error of file opening of save or load
file

ERROR _INPUT FILENAME EXTENSION OxFFFFFFF8 Invalid filename extension of save

or load file

3. Programming example

3.1. Visual Studio programming example
3.1.1. How to use the NiskNVRAM Library

NECOM

The following steps show that how to use the NiskNVRAM library in the project of Mircosoft
Visual Studio 2010 for this example:

1.Click the properties of the project of nvram_sample.

nyram_sample - Microzsoft Yisual Studio {Adminiztrator)

File Edit Wiew Project

iﬂ o leﬂ.j|dﬁ__1_‘_l,l|.:‘|'m,,—_-

Build Debug Team Data Tool: INtime

i

Ik

ph e EEE| 220803 6B amn
Solution Explorer
= (GHlobal Seope)
g Su:uluhun s A, sample (1 project) status =
I EI-] E:-d .‘E:‘.’. Build
=L Hee Rebuild
0|
ﬂ Clean
[Res Project Cily 3
=] = v
= & Proils Guided Optimization b
Euild Custormizations. ..
Add k
Eeferences...
B Class Wizand... Ctel+Shift+ X
&7 View Class Diagram
set az Btarfllp Project
Debug 3
2 Add Solution to Soumce Control...
4 Cut CHl+E
L Paske Ctl+
>‘.' Eemowe Diel
Eename Fi
Tnload Froject
Eescan Solution
Cpen Folder in Windows Explorer

i L

Properties

NECOM

2. Select the C/C++ category of properties, and pick the general option under that. In

the Additional Include Directories property, add the directory of the header files

which we want to include in this project. In picture below, we add the relative

directory “.\lib” for Additional Include Directories in this example.

nvyram_sample Property Pages

Confignration: IAchve(Release)

2=l

LI Platform: Iﬁchve (Win3z)

LI Configuration Manager. .. |

Comunon Properties
= Configuration Properties
Cremeral
Debugging
VC++ Directories
O CAC4H+
Greneral
Optimization
Preprocessor
Code Generation
Language
Precompiled Headers
Cutput Files
Browse Information
Advanced
Command Line
= Linker
(reneral
Input
Manifest File
Debugzing
Swstermn
Optimization
Embedded IDL

|+

1| | >

Additional Inchude Directories AMlib
Reslve # -
iti : 5 2
Debug Iic Additional Include Directories 21xl
Common EYE SIS
comm | x4
Warning | | B
Treat War | 4 | | _’I_I
Multi-pro
Tse Unice [nherited values:
I
I~ Inhexit from parent or project defaults Macrozs > |
ok | coma |
A
Additional Include Directories
Specifies one or more directories to add to the include path; separate with semi-colons if more than one. (I[path])
O = I

3. Select the Linker category of properties ,and pick the General option under that. In

the Additional Library Directories property, add the directory of the library files

which we want to use in this project. In picture below, we add the relative directory

“.\lib” for Additional Library Directories in this example.

Configuration; |Active(Relsass)

2l

7| Flatform: |[Active(Win32)

j Configuration Manager... |

Debugging -
VC++ Directories _I
= G+
General
Optimdzation
Preprocessor
Code Generation
Leanguage
Precompiled Headers
Cratput Files
Browse Information
Advanced
Conrisid Line
= Linker
Creneral
Input
Manifest File
Debugging
Sarstermn
Crptimization
Embedded IDL
Advanced
Conrisid Line
Manifest Tool
HML Document Generato
Browss Information Z
1| | >

Crutput File

Show Progress

Version

Eunable Increments] Linking
Suppress Startup Banner
1znove Impart Librasy
Register Qutput

Per-umr Redirection
Additional Library Directories

Additional Library Directories

§(OutDir)$(Targetl ame) (TargetBad)
NotSet

Ho (INCREMENTAL :HO)

Feg (NOLOGD
No
Mo
No
.\lib
2=

e
<] |

Inherited values:

[x| o] +]
=

[Inhexit from parent or project defanlts

[0]:4

=
L
bacros=» | ,TI

Cancel Lpnly

NECOM

4. Select the Linker category of properties and, pick the Input option under that. In
the Additional Dependencies property, add the library file, such as NiskNVRAM.lib
for Additional Dependencies property in this example.

nvram_sample Property Pages _‘?Ill
Configwation: |Active(Debng) 7| Flatorm: [Active (Win32) | | Configumtion Manager... |
Common Properties Additional Dependencies NiskENYRAM lib
[l Comfigmratinn Fropertiss Tgnore A1 Default Librasies
(reneral _—
Diebuggi Ignore Specific Defanlt Libraries
Vi 4+ Directories Module Definition File Additional Dependencies x|
CiCHt
i 244 Module to Asembly WKV EAM Bb ;I
Cleneral Embed Managed Resmouree File
Lnput Farce Symbol References
Ianifest File Delay Loaded Dllz e
Debugging lissembly Link Resource _I_I
System 7 LI »
Optimization el ol
Embedded IDL e
kemel?2 Lib -
Advanced w2l :I
Command Line 20097 lib
Manifest Toal winspool lib
HML Document Grenerator comdlg32 lih
Birowss Information LI
Build Events . X
Custom Brild Step [TInhexit from parent or project defanlts Macross» |
0K | Comal |
Additional Dependenci |
Specifies additional items 1o add to the link conumand line [ie. kemel32 lib]
QK I Cancel LpEply

NECOM

The following example is created by Microsoft Visual Studio 2010, You can find this
sample in installation folder (\Samples\VC2010\)

3.1.2. Programming example

This is a simple example to show that how to use the NiskNVRAM library for the
device of Nisk NVRAM by following instructions:

1.Initialization

Call initialization function and get the returned status.

2.Get the count of device

Check that there is no error code returned after initialization.
(a)If there is no error code returned after initialization.

- Getthe count of device.

- Get ram size of device.
(b)If there is an error code returned after initialization.

- Print the error code returned.

- Close the program.

3.According to the count of device, get and print the information and version of

device(s).

4 Write data test
Enter the offset address for data writing, writing data from 0 to 15 to the device
of Deviceld #0, the length of writing data is 16.

5.Read data test

Enter the offset address for data reading, reading data from the device of

Deviceld #0, the length of reading data is 16. Finally, print the read data.

6.Save data test

Test for saving data from device to file.

7.Save data test

Test for loading data from file to device.

NECOM

After finishing the programming of device, call the close function to close the

8.Close device

device.

#include <stdio.h>

#include <stdlib.h>

#include "NiskNVRAM.h"

void main (void)

{
U32_Tstatus = 0;
U32_Tcount = 0;
U32_Ti = 0;
U32_Tsize = 0;

U32_Tdriver_version[MAX_NVRAM_DEVICE _NUMBER];

U32_Tfirmware_version[MAX _NVRAM_DEVICE NUMBER];
U32_Thardware_version[MAX_NVRAM_DEVICE NUMBER];
U32_Tlibrary_version[MAX NVRAM DEVICE_NUMBER];

DEVICE_INFO_T dev_info[MAX_NVRAM_DEVICE_NUMBER];

U8_T write_data[l6] = {0, 1, 2, 3, 4, 5, 6, 7, 8§, 9, 10, 11, 12, 13, 14, 15};
U32_Twrite_length = 0;
U32_Twrite_offset = 0;
U32_Twrite_status = 0;

U8_T read_data[l1l6] = {0};
U32_Tread_length = 0;
U32_Tread_offset = 0;
U32_Tread_status = 0;

18 T* save_file = "C:\\test_data.nrw";
18 T* load_file

"C:\\test_data.nrw";

/*Instruction #1*/

/1 Nisk NVRAM initial

status = NSK Devicelnit();

/*Instruction #2*/
//get device(s) count

if(status = RETURN_SUCCESS)

{
//confirm there is no error after initialization
//get device of Nisk NVRAM count
status = NSK_GetDeviceCount (&count);
printf("This machine has installed %d device(s) of Nisk NVRAM\n",count);
status = NSK_GetDeviceRamSize(&size);
printf("size of Nisk NVRAM is %d bytes\n", size);

}

else//Initial fail

{
//print error code of initialization
printf("Error code : %x\n", status);
system("pause");

}

/*Instruction #3%/

//get device(s) information

for(1 = 0; 1 < count; 1++)

{
//depending on the device count we got
//get the information of device(s)
status = NSK_GetDevicelnfo(i, &dev_infol[i]);
printf("Device information:\n");
printf(" Device Id: %d\n", dev_info[1].DevicelD);
printf(" Bus Number: %d\n", dev_info[i].DeviceBusNum);
printf(" Device Number: %d\n", dev_info[1].DeviceDevNum);

printf(" Function Number: %d\n", dev_info[i].DeviceFuncNum);

//depending on the device count we got
//get the driver version of device(s)

//get the firmware version of device(s)

//get the hardware version of device(s)

//get the library version of devices(s)

status = NSK _GetDriverVersion(i, &driver_version[i]);
status = NSK_GetFirmwareVersion(i, &firmware_version[i]);
status = NSK_GetHardwareVersion(i, &hardware_version[i]);
status = NSK _GetLibraryVersion(i, &library _version[i]);
printf(" Driver version: %x\n", driver_version[i]);
printf(" Firmware version: %x\n", firmware version[i]);
printf(" Hardware version: %x\n", hardware_version[i]);

printf(" Library vesrion: %d\n", library_version[i]);

/*Instruction #4*/

//write data from O to 15 to deviceid O for testing

printf("\n<Write and read testing for device 0>\n");

printf("enter the offset for data write:\n");

scanf_s("%d", &write_offset);

write_status = NSK_WriteDataToRam(0O, write_offset, 16, &write_data[0]);
if (write_status == RETURN_SUCCESS)

{
printf("Write data success!!\n");
)
else
{
printf("NSK_WriteDataToRam Error code: %x\n", write_status);
)

/*Instruction #5%/

//read data from deviceid O from write offset for testing
printf("enter the offset for data read:\n");

scanf_s("%d", &read_offset);

read_status = NSK_ReadDataFromRam(O, read_offset, 16, &read_data[0]);
if (read_status == RETURN_SUCCESS)

{

printf("Read data success!!\n");

NECOM

}
else
{
printf("NSK_WriteDataToRam Error code: %x\n", write_status);
}
if (!read_status)
{
//print the read data
for (1 = 0; 1 <16; i++)
{
printf("read #%d byte : %d\n", 1, read_data[i]);
}
}

/*Instruction #6*/
//test for saving data from device to file("C:\\test data.nrw")
status = NSK_SaveDeviceDataToFile(0, save_file);

printf("Save data from device to file finish!!\n");

/*Instruction #7*/
//test for loading data from file("C:\\test_data.nrw") to device
status = NSK_LoadFileToDeviceData(0Q, load_file);

printf("Load data from file to device finish!!\n");

/*Instruction #8*/
/] Nisk NVRAM close
NSK_DeviceClose();

system("pause");

