VTC7250-7C8 API User Manual v1.0
- 01/09/2019 -NEXCOM

1. Introduction
The VTC7250-7C8 API is used for VTC7250-7C8 only.
2. Using VTC7250-7C8 API
The redistributable files are provided in the _LIB directory (VTC7250_7C8.dll) and should be included in the installation package for your application.
The VTC7250-7C8 API files (VTC7250_7C8.dll) must be placed in the same directory as your application's executable file.
3. Sample

#include "VTC7250_7C8.h"
#pragma comment(lib, "VTC7250_7C8.lib")
int _tmain(int argc, _TCHAR* argv[])

{
 Connect();
 SetWiFiControl(1);
 Disconnect();

return 0;

}
4. VTC7250-7C8 Structures
	PortLinkStatus
 The PortLinkStatus structure is used to store status of 8 ports.
Syntax

struct PortLinkStatus

{

unsigned char status[8];

};
Members
 status
 8 BYTE data
Remarks
None

5. VTC7250-7C8 Functions
	Get_DLL_Version
 This function is used to get version of “VTC7250_7C8.dll”.

Syntax

void Get_DLL_Version(

int *pnMajorVersion,

int *pnMinorVersion
);
Parameters
pnMajorVersion [out]
Pointer to an int variable that receives the “Major Version”.
pnMinorVersion [out]
Pointer to an int variable that receives the “Minor Version”.
Return Values
None
Remarks
 The current version of “VTC7250_7C8.dll” is 1.0.

	Get_BIOS_Version
 This function is used to get version of BIOS.

Syntax

bool Get_BIOS_Version(

char *szBIOS_Ver,

int nLen
);
bool Get_BIOS_Version_W(

wchar_t *szBIOS_Ver,

int nLen
);
Parameters
szBIOS_Ver [in]
Pointer to the buffer that will receive the version of BIOS.
nLen [in]
Specifies the maximum number of characters to copy to the buffer.
Return Values
Return true => Success.

Return false => Failed.

Remarks
 None.

	Connect
 This function is used to connect to serial port (COM6).

Syntax

int Connect();
Parameters
None
Return Values
Return 1 => success

Return -1 => Unable to open serial port.

Return -5 => Failed to create a thread.

Remarks
 COM6 setting : I/O Range is 02E0 – 02E7, IRQ is 0x0A(10).

	Disconnect
 This function is used to disconnect serial port (COM6).

Syntax

void Disconnect();
Parameters
None
Return Values
None
Remarks
 None

	GetMCUVersion
 This function is used to get version of MCU firmware.

Syntax

int GetMCUVersion(

int *pnMCUVersion
);
Parameters
pnMCUVersion [out]
Pointer to an int variable that receives the version of MCU firmware.

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 None

	GetHWVersion
 This function is used to get version of PCB.

Syntax

int GetHWVersion(

int *pnHWVersion
);
Parameters
pnHWVersion [out]
Pointer to an int variable that receives the version of PCB.

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 None

	GetDTPVersion
 This function is used to get version of MCU data transmission protocol.

Syntax

int GetDTPVersion(

int *pnDTPVersion
);
Parameters
pnDTPVersion [out]
Pointer to an int variable that receives the version of MCU data transmission
protocol.

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 None

	GetBLVersion
 This function is used to get version of MCU boot loader.

Syntax

int GetBLVersion(

int *pnBLVersion
);
Parameters
pnBLVersion [out]
Pointer to an int variable that receives the version of MCU boot loader.

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 None

	GetIgnitionStatus
 This function is used to get ignition status.

Syntax

int GetIgnitionStatus(

int *pnIgnitionStatus
);
Parameters
pnIgnitionStatus [out]
Pointer to an int variable that receives the ignition status.

Value
Meaning
0

Ignition “OFF”
1

Ignition “ON”
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 None

	GetSupplyVoltage
 This function is used to get supply voltage.

Syntax

int GetSupplyVoltage(

int *pnSupplyVoltage
);
Parameters
pnSupplyVoltage [out]
Pointer to an int variable that receives the supply voltage.

Supply voltage : 0 ~ 38 V

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 None

	GetPowerType
 This function is used to get power type.

Syntax

int GetPowerType(

int *pnPowerType
);
Parameters
pnPowerType [out]
Pointer to an int variable that receives the power type.

Value
Meaning
0

9~36V(default)
1

Reserved(9~36)
2

24V
3

12V
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 None

	GetDelayTimeOption
 This function is used to get delay time option.

Syntax

int GetDelayTimeOption(

int *pnPowerOff,

int *pnPowerOn,

int *pnDelayOffEnable,

int *pnDelayOnEnable
);
Parameters
pnPowerOff [out]
Pointer to an int variable that receives the power off setting.

Value
Meaning
0

20 seconds
1

1 minute
2

5 minutes
3

10 minutes
4

30 minutes
5

1 hour
6

6 hours
7

18 hours
pnPowerOn [out]
Pointer to an int variable that receives the power on setting.

Value
Meaning
0

10 seconds
1

30 seconds
2

1 minute
3

5 minutes
4

10 minutes
5

15 minutes
6

30 minutes
7

1 hour
pnDelayOffEnable [out]
Pointer to an int variable that receives the delay off is enable or disable.

Value
Meaning
0

Disable
1

Enable
pnDelayOnEnable [out]
Pointer to an int variable that receives the delay on is enable or disable.

Value
Meaning
0

Disable
1

Enable
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 None

	GetStartupShutdownOption
 This function is used to get setting of startup shutdown option.

Syntax

int GetStartupShutdownOption(

int *pnStartupShutdownOption
);
Parameters
pnStartupShutdownOption [out]
Pointer to an int variable that receives the startup shutdown option setting.

Value
Meaning
12V
24V
Startup

Shutdown

Startup

Shutdown

0
11.5V
10.5V
23.0V
21.0V
1
12.0V
11.0V
24.0V
22.0V
2
12.5V
11.0V
25.0V
22.0V
3
12.5V
11.5V
25.0V
23.0V
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 None

	GetAlarmTimer
 This function is used to get setting of real-time clock alarm.

Syntax

int GetAlarmTimer(

int *pnHour,

int *pnMin,

int *pnSec
);
Parameters
pnHour [out]
Pointer to an int variable that receives the hour.

pnMin [out]
Pointer to an int variable that receives the minute.

pnSec [out]
Pointer to an int variable that receives the second.
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 A real time clock alarm is a feature that can be used to allow a computer
 to 'wake up' after shut down to execute tasks every day or on a certain day.

	GetWWANStatus
 This function is used to get status of wireless wide area network (WWAN).

Syntax

int GetWWANStatus(

int *pnWWAN_Enable1,

int *pnWWAN_Wakeup_Enable1,

int *pnWWAN_Enable2
);
Parameters
pnWWAN_Enable1 [out]
Pointer to an int variable that receives the WWAN 1 is “enable” or “disable”.

Value
Meaning
0

Disable

1

Enable

pnWWAN_Wakeup_Enable1 [out]
Pointer to an int variable that receives the WWAN Wakeup 1

is “enable” or “disable”.

Value
Meaning
0

Disable

1

Enable

pnWWAN_Enable2 [out]
Pointer to an int variable that receives the WWAN 2 is “enable” or “disable”.

Value
Meaning
0

Disable

1

Enable

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 None

	GetWiFiStatus
 This function is used to get status of WiFi.

Syntax

int GetWiFiStatus(

int *pnWiFi_En1,

int *pnWiFi_En2,

int *pnWiFi_Pw1,

int *pnWiFi_Pw2
);
Parameters
pnWiFi_En1 [out]
Pointer to an int variable that receives the WiFi 1 status.

Value
Meaning
0

Disable

1

Enable

pnWiFi_En2 [out]
Pointer to an int variable that receives the WiFi 2 status.

Value
Meaning
0

Disable

1

Enable

pnWiFi_Pw1 [out]
Pointer to an int variable that receives the WiFi 1 status.

Value
Meaning
0

Power off
1

Power on
pnWiFi_Pw2 [out]
Pointer to an int variable that receives the WiFi 2 status.

Value
Meaning
0

Power off
1

Power on
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 Power on/off is used for USB module only.

	GetBTStatus
 This function is used to get Bluetooth is enable or disable.

Syntax

int GetBTStatus(

int *pnBTStatus
);
Parameters
pnBTStatus [out]
Pointer to an int variable that receives the Bluetooth status.

Value
Meaning
0

Disable

1

Enable

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 None

	GetGPSStatus
 This function is used to get Global Positioning System (GPS) is enable or disable.

Syntax

int GetGPSStatus(

int *pnGPSStatus
);
Parameters
pnGPSStatus [out]
Pointer to an int variable that receives the GPS status.

Value
Meaning
0

Disable

1

Enable

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 None

	GetUSBStatus
 This function is used to get USB 3.0 is enable or disable.

Syntax

VTC7250-7C8_API int GetUSBStatus(

int *pnUSB3_1,

int *pnUSB3_2,

int *pnUSB3_3
);
Parameters
pnUSB3_1 [out]
Pointer to an int variable that receives the USB 3.0 (1) status.

Value
Meaning
0

Disable
1

Enable
pnUSB3_2 [out]
Pointer to an int variable that receives the USB 3.0 (2) status.

Value
Meaning
0

Disable
1

Enable
pnUSB3_3 [out]
Pointer to an int variable that receives the USB 3.0 (3) status.

Value
Meaning
0

Disable
1

Enable
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 None

	GetRTCStatus
 This function is used to get Real-time clock (RTC) alarm is enable or disable.

Syntax

int GetRTCStatus(

int *pnRTCStatus
);
Parameters
pnRTCStatus [out]
Pointer to an int variable that receives the RTC status.

Value
Meaning
0

Disable

1

Enable

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 None

	GetWatchdogConfig
 This function is used to get setting of watchdog.

Syntax

int GetWatchdogConfig(

int *pnWDT_Enable,

int *pnTimeout
);
Parameters
pnWDT_Enable [out]
Pointer to an int variable that receives the WDT is enable or disable.

Value
Meaning
0

Disable

1

Enable

pnTimeout [out]
Pointer to an int variable that receives the timeout setting.

Timeout : 3 ~ 255 seconds

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 None

	GetMDOStatus
 This function is used to get MCU GPO 1 ~ 4 status.

Syntax

int GetMDOStatus(

int *pnMDO1,

int *pnMDO2,

int *pnMDO3,

int *pnMDO4
);
Parameters
pnMDO1 [out]
Pointer to an int variable that receives the MCU GPO 1 status.

Value
Meaning
0

Low
1

High
pnMDO2 [out]
Pointer to an int variable that receives the MCU GPO 2 status.

Value
Meaning
0

Low
1

High
pnMDO3 [out]
Pointer to an int variable that receives the MCU GPO 3 status.

Value
Meaning
0

Low
1

High
pnMDO4 [out]
Pointer to an int variable that receives the MCU GPO 4 status.

Value
Meaning
0

Low
1

High
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 None

	GetMDIStatus
 This function is used to get MCU GPI 1 ~ 4 status.

Syntax

int GetMDIStatus(

int *pnMDI1,

int *pnMDI2,

int *pnMDI3,

int *pnMDI4
);
Parameters
pnMDI1 [out]
Pointer to an int variable that receives the MCU GPI 1 status.

Value
Meaning
0

Low
1

High
pnMDI2 [out]
Pointer to an int variable that receives the MCU GPI 2 status.

Value
Meaning
0

Low
1

High
pnMDI3 [out]
Pointer to an int variable that receives the MCU GPI 3 status.

Value
Meaning
0

Low
1

High
pnMDI4 [out]
Pointer to an int variable that receives the MCU GPI 4 status.

Value
Meaning
0

Low
1

High
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 None

	GetGsensorData
 This function is used to get G-sensor (Accelerometer) data.

Syntax

int GetGsensorData(

int nRegisterIndex,

unsigned char *pbyGsensorData,

int nGsensorDataLen
);
Parameters
nRegisterIndex [in]
An int variable that specify register index of G-sensor data.

Register index (0, 29 ~ 57)

pbyGsensorData [out]
 Pointer to an array that receives the length of the G-sensor data.
 nGsensorDataLen [in]
 Integer that specifies the number of elements in the pbyGsensorData array.
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 More G-sensor information please read “G-sensor REGISTER MAP” table

Example

1. I want to read “X-Axis Data 0”
//“X-Axis Data 0” register number is 50;
unsigned char byData;
GetGsensorData(50, &byData, 1);
2. I want to get “X-Axis Data 0”, “X-Axis Data 1”, “Y-Axis Data 0”, “Y-Axis Data 1”
“Z-Axis Data 0”, “Z-Axis Data 1”
//“X-Axis Data 0” register number is 50;

//“X-Axis Data 1” register number is 51;

//“Y-Axis Data 0” register number is 52;

//“Y-Axis Data 1” register number is 53;

//“Z-Axis Data 0” register number is 54;

//“Z-Axis Data 1” register number is 55;
unsigned char byData[6];
GetGsensorData(50, byData, 6);

	GetInputFrequency
 This function is used to get input frequency.

Syntax

int GetInputFrequency(

int *pnInputFrequency
);
Parameters
pnInputFrequency [out]
Pointer to an int variable that receives the input frequency.

input frequency : 0 ~ 65535 Hz

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 None

	GetSIMCardStatus
 This function is used to get SIM card status.

Syntax

int GetSIMCardStatus(

int nWWAN,

int *pnSIM
);
Parameters
nWWAN [in]
Value
Meaning
0

WWAN 1
1

WWAN 2
pnSIM [out]
Pointer to an int variable that receives the SIM card status.

pnSIM
Meaning
nWWAN == 0 (WWAN 1)
0

SIM Card 2
1

SIM Card 3
nWWAN == 1 (WWAN 2)
0
SIM Card 1
1

SIM Card 2
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 None

	GetProgramLEDStatus
 This function is used to get LED status.

Syntax

int GetProgramLEDStatus(

int *pnLED1,

int *pnLED2,

int *pnLED3,

int *pnLED4
);
Parameters
pnLED1 [out]
Pointer to an int variable that receives the LED 1 status.

Value
Meaning
0

LED OFF
1

LED ON
pnLED2 [out]
Pointer to an int variable that receives the LED 2 status.

Value
Meaning
0

LED OFF
1

LED ON
pnLED3 [out]
Pointer to an int variable that receives the LED 3 status.

Value
Meaning
0

LED OFF
1

LED ON
pnLED4 [out]
Pointer to an int variable that receives the LED 4 status.

Value
Meaning
0

LED OFF
1

LED ON
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 None

	GetWakeOnLanStatus
 This function is used to get Wake-on-LAN is enable or disable.

Syntax

int GetWakeOnLanStatus(

int *pnWakeOnLanStatus
);
Parameters
pnWakeOnLanStatus [out]
Pointer to an int variable that receives the Wake-on-LAN is enable or disable.

Value
Meaning
0

Disable

1

Enable

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 None

	GetExternal12VStatus

 This function is used to get power of External 12V is enable or disable.

Syntax

int GetExternal12VStatus(

int *pnExternal12VStatus

);

Parameters

pnExternal12VStatus [out]

Pointer to an int variable that receives the power of External 12V is enable
or disable.

Value

Meaning

0

Disable

1

Enable

Return Values

Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks

 None

	GetPCIE_SATA_Mode
 This function is used to get Mini PCIe (CN9) type is PCIe mode or SATA mode.

Syntax

int GetPCIE_SATA_Mode(

int *pnMode
);
Parameters

pnMode [out]

Pointer to an int variable that receives the type is PCIe mode or SATA mode.
Value

Meaning

0

SATA
1

PCIe
Return Values

Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks

 None

	SetLoadDefault
 This function is used to set MCU load default settings.

Syntax

int SetLoadDefault();
Parameters
None
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
 None

	SetRTCTimer
 This function is used to set MCU Real-time clock (RTC).

Syntax

int SetRTCTimer(

int nHour,

int nMin,

int nSec
);
Parameters
nHour [in]
 The hour. The valid values for this member are 0 through 23.
nMin [in]
The minute. The valid values for this member are 0 through 59.
nSec [in]
The second. The valid values for this member are 0 through 59.
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
 This function must be called before calling “SetAlarmTimer”.

	SetDelayTimeOption
 This function is used to set delay time option.

Syntax

int SetDelayTimeOption(

int nPowerOffDelayTime,

int nPowerOffDelayTime_Enable,

int nPowerOnDelayTime,

int nPowerOnDelayTime_Enable
);
Parameters
nPowerOffDelayTime [in]
Value
Meaning
0

20 seconds
1

1 minute
2
5 minutes
3
10 minutes
4
30 minutes
5
1 hour
6
6 hours
7
18 hours
nPowerOffDelayTime_Enable [in]
Value
Meaning
0

Disable

1

Enable

nPowerOnDelayTime [in]
Value
Meaning
0

10 seconds
1

30 seconds
2
1 minute
3
5 minutes
4
10 minutes
5
15 minutes
6
30 minutes
7
1 hour
nPowerOnDelayTime_Enable [in]
Value
Meaning
0

Disable

1

Enable

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
 None

	SetStartupShutdownOption
 This function is used to set the startup and shutdown option.

Syntax

int SetStartupShutdownOption(

int nOption
);
Parameters
nOption [in]
New option type.

Value
Meaning
12V
24V
Startup

Shutdown

Startup

Shutdown

0
11.5V
10.5V
23.0V
21.0V
1
12.0V
11.0V
24.0V
22.0V
2
12.5V
11.0V
25.0V
22.0V
3
12.5V
11.5V
25.0V
23.0V
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
 None

	SetAlarmTimer
 This function is used to set real-time clock alarm setting.

Syntax

int SetAlarmTimer(

int nHour,

int nMin,

int nSec
);
Parameters
nHour [in]
 The hour. The valid values for this member are 0 through 23.
nMin [in]
The minute. The valid values for this member are 0 through 59.
nSec [in]
The second. The valid values for this member are 0 through 59.
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
 A real time clock alarm is a feature that can be used to allow a computer
to 'wake up' after shut down to execute tasks every day or on a certain day.
 Before use “SetAlarmTimer”, the current time have to set by calling “SetRTCTimer”.

 For example :

 Now is 10:00 o’clock, then system must wake up at 11:00 o’clock.

 SetRTCTimer(10,0,0);

 SetAlarmTimer(11,0,0);

 SetRTCControl(1);

	SetWWANControl
 This function is used to set wireless wide area network (WWAN) settings.

Syntax

int SetWWANControl(

int nWWAN_Enable1,

int nWWAN_Wakeup_Enable1,

int nWWAN_Enable2
);
Parameters
nWWAN_Enable1 [in]
Value
Meaning
0

Disable

1

Enable

nWWAN_Wakeup_Enable1 [in]
Value
Meaning
0

Disable

1

Enable

nWWAN_Enable2 [in]
Value
Meaning
0

Disable

1

Enable

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
 None

	SetWiFiControl
 This function is used to set WiFi is enable or disable and power on/off.

Syntax

int SetWiFiControl(

int nWiFi_En1,

int nWiFi_En2,

int nWiFi_Pw1,

int nWiFi_Pw2
);
Parameters
nWiFi_En1 [in]
Value
Meaning
0

Disable

1

Enable

nWiFi_En2 [in]
Value
Meaning
0

Disable

1

Enable

nWiFi_Pw1 [in]
Value
Meaning
0

Power off
1

Power on
nWiFi_Pw2 [in]
Value
Meaning
0

Power off
1

Power on
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
 Power on/off is used for USB module only.

	SetBTControl
 This function is used to sets Bluetooth is enable or disable.

Syntax

int SetBTControl(

int nBT
);
Parameters
nBT [in]
Value
Meaning
0

Disable

1

Enable

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
 None

	SetGPSControl
 This function is used to set Global Positioning System (GPS) is enable or disable.

Syntax

int SetGPSControl(

int nEnable
);
Parameters
nEnable [in]
Value
Meaning
0

Disable

1

Enable

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
 None

	SetUSBControl
 This function is used to set USB 3.0 is enable or disable.

Syntax

VTC7250-7C8_API int SetUSBControl(

int nUSB3_1,

int nUSB3_2,

int nUSB3_3
);
Parameters
nUSB3_1 [in]
Value
Meaning
0

Disable

1

Enable

nUSB3_2 [in]
Value
Meaning
0

Disable

1

Enable

nUSB3_3 [in]
Value
Meaning
0

Disable

1

Enable

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
 None

	SetRTCControl
 This function is used to set real-time clock alarm is enable or disable.

Syntax

int SetRTCControl(

int nEnable
);
Parameters
nEnable [in]
Value
Meaning
0

Disable

1

Enable

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
 None

	SetWatchdogControl
 This function is used to set watchdog is enable or disable.

Syntax

int SetWatchdogControl(

int nWDT_Enable
);
Parameters
nWDT_Enable [in]
Value
Meaning
0

Disable

1

Enable

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
 None

	SetWatchdogTimer
 This function is used to set watchdog timeout.

Syntax

int SetWatchdogTimer(

int nWDT_TimeOut
);
Parameters
nWDT_TimeOut [in]
The second. The valid values for this member are 3 through 255.
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
 None

	SetFlashUpdate
 This function is used to update Flash Memory (Write some settings to flash memory).

Syntax

int SetFlashUpdate();
Parameters
 None
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Remarks
 After changing settings, please call this function to keep settings.

	SetMDOControl
 This function is used to set MCU GPO 1~4 is low or high.

Syntax

int SetMDOControl(

int nMDO1,

int nMDO2,

int nMDO3,

int nMDO4
);
Parameters
nMDO1 [in]
Value
Meaning
0

Low
1

High
nMDO2 [in]
Value
Meaning
0

Low
1

High
nMDO3 [in]
Value
Meaning
0

Low
1

High
nMDO4 [in]
Value
Meaning
0

Low
1

High
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
 None

	SetGsensorData
 This function is used to set G-sensor (Accelerometer) Data.

Syntax

int SetGsensorData(

int nRegIdx,

unsigned char *pbyData,

int nLen
);
Parameters
nRegIdx [in]
An int variable that specify register index of G-sensor data.

Register index (0, 29 ~ 57)
pbyData [in]
An array of BYTE that specify the G-sensor Data.
nLen [in]
Integer that specifies the number of elements in the pbyData array.
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 More G-sensor information please read “G-sensor REGISTER MAP” table

Example

1. I want to write “X-axis offset”
// “X-axis offset” register number is 30;
unsigned char byData = 0x0;
SetGsensorData(30, &byData, 1);
2. I want to write “X-axis offset”, “Y-axis offset”, “Z-axis offset”
//“X-axis offset” register number is 30;

//“Y-axis offset” register number is 31;

//“Z-axis offset” register number is 32;

unsigned char byData[3] = {1,2,3};
SetGsensorData(30, byData, 3);

	SetSIMCardSelect
 This function is used to set SIM card status.

Syntax

int SetSIMCardSelect(

int nWWAN,

int nSIM
);
Parameters
nWWAN [in]
Value
Meaning
0

WWAN 1
1

WWAN 2
nSIM [in]
nSIM
Meaning
nWWAN == 0 (WWAN 1)
0

SIM Card 1
1

SIM Card 2
nWWAN == 1 (WWAN 2)
0
SIM Card 2
1

SIM Card 3
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
 None

	SetProgramLEDControl
 This function is used to set LED status.

Syntax

int SetProgramLEDControl(

int nLED1,

int nLED2,

int nLED3,

int nLED4
);
Parameters
nLED1 [in]
Value
Meaning
0

LED OFF
1

LED ON
nLED2 [in]
Value
Meaning
0

LED OFF
1

LED ON
nLED3 [in]
Value
Meaning
0

LED OFF
1

LED ON
nLED4 [in]
Value
Meaning
0

LED OFF
1

LED ON
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
 None

	SetWakeOnLanControl
 This function is used to set Wake-on-LAN is enable or disable.

Syntax

int SetWakeOnLanControl(

int nEnable
);
Parameters
nEnable [in]
Value
Meaning
0

Disable

1

Enable

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
 None

	SetExternal12VControl

 This function is used to set power of External 12V is enable or disable.

Syntax

int SetExternal12VControl(

int nEnable

);

Parameters

nEnable [in]

Value

Meaning

0

Disable

1

Enable

Return Values

Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks

 None

	SetPCIE_SATA_Mode
 This function is used to set Mini PCIe (CN9) type is PCIe mode or SATA mode.
Syntax

int SetPCIE_SATA_Mode(

int nMode
);
Parameters

nMode [in]

Value

Meaning

0

SATA
1

PCIe
Return Values

Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks

 None

	ExBat_GetMCUVersion
 This function is used to get version of VTK62B MCU firmware.

Syntax

int ExBat_GetMCUVersion(

int *pnMCUVersion
);
Parameters
pnMCUVersion [out]
Pointer to an int variable that receives the version of MCU firmware.

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 This API is used for VTK62B which connect to 2x4 Double Row 8 Pin Connector socket.

	ExBat_GetHWVersion
 This function is used to get version of VTK62B PCB.

Syntax

int ExBat_GetHWVersion(

int *pnPCB
);
Parameters
pnPCB [out]
Pointer to an int variable that receives the version of PCB.

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 This API is used for VTK62B which connect to 2x4 Double Row 8 Pin Connector socket.

	ExBat_GetDTPVersion
 This function is used to get version of VTK62B MCU data transmission protocol.

Syntax

int ExBat_GetDTPVersion(

int *pnDTPVersion
);
Parameters
pnDTPVersion [out]
Pointer to an int variable that receives the version of MCU data transmission
protocol.

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 This API is used for VTK62B which connect to 2x4 Double Row 8 Pin Connector socket.

	ExBat_GetBLVersion
 This function is used to get version of VTK62B MCU boot loader.

Syntax

int ExBat_GetBLVersion(

int *pnBLVersion
);
Parameters
pnBLVersion [out]
Pointer to an int variable that receives the version of MCU boot loader.

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 This API is used for VTK62B which connect to 2x4 Double Row 8 Pin Connector socket.

	ExBat_GetIgnitionStatus
 This function is used to get ignition status of VTK62B.

Syntax

int ExBat_GetIgnitionStatus(

int *pnIgnitionStatus
);
Parameters
pnIgnitionStatus [out]
Pointer to an int variable that receives the ignition status.

Value
Meaning
0

Ignition “OFF”
1

Ignition “ON”
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 This API is used for VTK62B which connect to 2x4 Double Row 8 Pin Connector socket.

	ExBat_GetSupplyVoltage
 This function is used to get supply voltage of VTK62B.

Syntax

int ExBat_GetSupplyVoltage(

int *pnSupplyVoltage
);
Parameters
pnSupplyVoltage [out]
Pointer to an int variable that receives the supply voltage.

Supply voltage : 0 ~ 38 V

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 This API is used for VTK62B which connect to 2x4 Double Row 8 Pin Connector socket.

	ExBat_GetSystemTemperature
 This function is used to get temperature of VTK62B.

Syntax

int ExBat_GetSystemTemperature(

int *pnSystemTemperature
);
Parameters
pnSystemTemperature [out]
Pointer to an int variable that receives the temperature.

Temperature : -27 ℃ ~ 125 ℃
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 This API is used for VTK62B which connect to 2x4 Double Row 8 Pin Connector socket.

	ExBat_GetMDOStatus
 This function is used to get VTK62B MCU GPO 1 ~ 2 status.

Syntax

int ExBat_GetMDOStatus(

int *pnMDO1,

int *pnMDO2
);
Parameters
pnMDO1 [out]
Pointer to an int variable that receives the MCU GPO 1 status.

Value
Meaning
0

Low
1

High
pnMDO2 [out]
Pointer to an int variable that receives the MCU GPO 2 status.

Value
Meaning
0

Low
1

High
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 This API is used for VTK62B which connect to 2x4 Double Row 8 Pin Connector socket.

	ExBat_GetPowerType
 This function is used to get power type of VTK62B.

Syntax

int ExBat_GetPowerType(

int *pnPowerType
);
Parameters
pnPowerType [out]
Pointer to an int variable that receives the power type.

Value
Meaning
0

12V(default)
1

24V
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 This API is used for VTK62B which connect to 2x4 Double Row 8 Pin Connector socket.

	ExBat_GetPowerRange
 This function is used to get power range of VTK62B.

Syntax

int ExBat_GetPowerRange(

int *pnPowerRange
);
Parameters
pnPowerRange [out]
Pointer to an int variable that receives the power range.

Value
Meaning
12V
24V
High
Low
High
Low
0
12.5V
11.5V
25.0V
23.0V
1
13.0V
12.0V
26.0V
24.0V
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 This API is used for VTK62B which connect to 2x4 Double Row 8 Pin Connector socket.

	ExBat_SetFlashUpdate
 This function is used to update Flash Memory of VTK62B
(Write some settings to flash memory).

Syntax

int ExBat_SetFlashUpdate();
Parameters
 None
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Remarks
 After changing settings, please call this function to keep settings.

 This API is used for VTK62B which connect to 2x4 Double Row 8 Pin Connector socket.

	ExBat_SetMDOControl
 This function is used to set VTK62B MCU GPO 1~2 is low or high.

Syntax

int ExBat_SetMDOControl(

int nMDO1,

int nMDO2
);
Parameters
nMDO1 [in]
Value
Meaning
0

Low
1

High
nMDO2 [in]
Value
Meaning
0

Low
1

High
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
 This API is used for VTK62B which connect to 2x4 Double Row 8 Pin Connector socket.

	ExBat_GetBackupBatteryStatus
 This function is used to get battery status of VTK62B.

Syntax

int ExBat_GetBackupBatteryStatus(

int *pnBatteryStatus
);
Parameters
pnBatteryStatus [out]
Pointer to an int variable that receives the battery status.

Value
Meaning
0

Backup Battery Isn’t Inserted.
1
Backup Battery Charge Finish.
2
Backup Battery Charge Now.
3
Backup Battery Discharge Now.
4
Backup Battery Charge Stop.
5
Backup Battery idle.
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 This API is used for VTK62B which connect to 2x4 Double Row 8 Pin Connector socket.

	ExBat_GetSmartBatteryVoltage
 This function is used to get voltage of VTK62B.

Syntax

int ExBat_GetSmartBatteryVoltage(

int *pnBatteryVoltage
);
Parameters
pnBatteryVoltage [out]
Pointer to an int variable that receives the voltage (mV).

Voltage : 0 ~ 65535 mV

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 This API is used for VTK62B which connect to 2x4 Double Row 8 Pin Connector socket.

	ExBat_GetSmartBatteryTemperature
 This function is used to get temperature of VTK62B.

Syntax

int ExBat_GetSmartBatteryTemperature(

int *pnBatteryTemperature
);
Parameters
pnBatteryTemperature [out]
Pointer to an int variable that receives the temperature.

Temperature : -30 ℃ ~ 127 ℃
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 This API is used for VTK62B which connect to 2x4 Double Row 8 Pin Connector socket.

	ExBat_GetSmartBatteryStatus
 This function is used to get status of VTK62B.

Syntax

int ExBat_GetSmartBatteryStatus(

int *pnBatteryStatus
);
Parameters
pnBatteryStatus [out]
Pointer to an int variable that receives the status.

Value
Meaning
Bit 0

error code bit0
Bit 1
error code bit1
Bit 2
error code bit2
Bit 3
error code bit3
Bit 4
status fully discharged
Bit 5
status fully charged
Bit 6
status discharging
Bit 7
status gauge initialized
Bit 8
alarm remaining time
Bit 9
alarm remaining capacity
Bit 10
Reversed
Bit 11
alarm terminate discharge
Bit 12
alarm over temperature
Bit 13
Reversed
Bit 14
alarm terminate charge
Bit 15
alarm over charge
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 This API is used for VTK62B which connect to 2x4 Double Row 8 Pin Connector socket.

	ExBat_GetSmartBatteryCapacity
 This function is used to get capacity of VTK62B.

Syntax

int ExBat_GetSmartBatteryCapacity(

int *pnBatteryCapacity
);
Parameters
pnBatteryCapacity [out]
Pointer to an int variable that receives the capacity.

Capacity : 0 ~ 100%

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 This API is used for VTK62B which connect to 2x4 Double Row 8 Pin Connector socket.

	ExBat_GetSmartBatteryCurrent
 This function is used to get current of VTK62B.

Syntax

int ExBat_GetSmartBatteryCurrent(

int *pnBatteryCurrent
);
Parameters
pnBatteryCurrent [out]
Pointer to an int variable that receives the current.

Current : 0 ~ 32768 mA
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 This API is used for VTK62B which connect to 2x4 Double Row 8 Pin Connector socket.

	ExBat_GetThresholdSetting
 This function is used to get threshold setting of VTK62B.

Syntax

int ExBat_GetThresholdSetting(

int *pnThreshold_Low,

int *pnThreshold_High
);
Parameters
pnThreshold_Low [out]
Pointer to an int variable that receives the voltage (mV).

Voltage : 0 ~ 100 V

pnThreshold_High [out]
Pointer to an int variable that receives the voltage (mV).

Voltage : 0 ~ 100 V

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 This API is used for VTK62B which connect to 2x4 Double Row 8 Pin Connector socket.

	ExBat_GetDelayTimeStatus
 This function is used to get delay time status of VTK62B.

Syntax

int ExBat_GetDelayTimeStatus(

int *pnStatus
);
Parameters
pnStatus [out]
Pointer to an int variable that receives the delay time status.

Value
Meaning
0

5 Mins (default)
1
10 Mins
2
15 Mins
3
20 Mins
4
30 Mins
5
45 Mins
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 This API is used for VTK62B which connect to 2x4 Double Row 8 Pin Connector socket.

	ExBat_GetDelayTimeNow
 This function is used to get delay time of VTK62B.

Syntax

int ExBat_GetDelayTimeNow(

int *pnDelayTime
);
Parameters
pnDelayTime [out]
Pointer to an int variable that receives the delay time.

0 ~ 2700

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 This API is used for VTK62B which connect to 2x4 Double Row 8 Pin Connector socket.

	ExBat_SetDelayTimeControl
 This function is used to set Delay Time of VTK62B.

Syntax

int ExBat_SetDelayTimeControl(

int nTime
);
Parameters
nTime [in]
Value
Meaning
0

5 Mins (default)
1
10 Mins
2
15 Mins
3
20 Mins
4
30 Mins
5
45 Mins
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -6 => Parameter value is out of range.

Remarks
 This API is used for VTK62B which connect to 2x4 Double Row 8 Pin Connector socket.

	GetPSEFWVersion
 This function is used to get version of PSE firmware.

Syntax

int GetPSEFWVersion(

int *pnPSE1,

int *pnPSE2
);
Parameters
pnPSE1 [out]
Pointer to an int variable that receives the version of PSE 1 firmware.

pnPSE2 [out]
Pointer to an int variable that receives the version of PSE 2 firmware.

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 None

	GetPSETemperature
 This function is used to get temperature of PSE.

Syntax

int GetPSETemperature(

int *pnPSEtemp1,

int *pnPSEtemp2
);
Parameters
pnPSEtemp1 [out]
Pointer to an int variable that receives the temperature of PSE 1.

Temperature : -27 ℃ ~ 127 ℃
pnPSEtemp2 [out]
Pointer to an int variable that receives the temperature of PSE 2.

Temperature : -27 ℃ ~ 127 ℃
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 None

	GetTotalConsumption
 This function is used to get total power consumption.

Syntax

int GetTotalConsumption(

int *pnTotalConsumption
);
Parameters
pnTotalConsumption [out]
Pointer to an int variable that receives the total power consumption (W).

Power consumption : 0 ~ 255 W.

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 None

	GetPOEStatus
 This function is used to get power status of all PoE port.

Syntax

int GetPOEStatus(

unsigned char *pbyStatus
);
Parameters
pbyStatus [out]
Pointer to an unsigned char variable that receives the power status.

Bit
Value
Meaning
Bit 0

0

PoE Port 1 is power off
1

PoE Port 1 is power on
Bit 1
0
PoE Port 2 is power off
1
PoE Port 2 is power on
Bit 2
0
PoE Port 3 is power off
1
PoE Port 3 is power on
Bit 3
0

PoE Port 4 is power off
1

PoE Port 4 is power on
Bit 4
0
PoE Port 5 is power off
1
PoE Port 5 is power on
Bit 5
0
PoE Port 6 is power off
1
PoE Port 6 is power on
Bit 6
0
PoE Port 7 is power off
1
PoE Port 7 is power on
Bit 7
0
PoE Port 8 is power off
1
PoE Port 8 is power on
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 None

	GetPortPowerConsumption
 This function is used to get power consumption of PoE port.

Syntax

int GetPortPowerConsumption(

int nIndex,

int *pnConsumption
);
Parameters
nIndex [In]
The port number. The valid values for this member are 1 through 6.
pnConsumption [out]
Pointer to an int variable that receives the power consumption (W).

Power consumption : 0 ~ 255 W.

Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 None

	GetAllPortLinkStatus
 This function is used to get link status of All PoE port.

Syntax

int GetAllPortLinkStatus(

PortLinkStatus *pLinkStatus
);
Parameters
pLinkStatus [out]
Pointer to a struct PortLinkStatus that receives all link status.
Bit
Value
Meaning
Bit 2~0

0

Unknow
1

Short
2
Cpd too high
3
RSIG too low
4
Good
5
RSIG too high
6
Open Circuit
Bit
Value
Meaning
Bit 6~4
0

Unknow
1

Class 1
2
Class 2
3
Class 3
4
Class 4
6
Class 0
7
Over-Current
Return Values
Return 1 => Success.

Return 0 => Failed.

Return -1 => Serial port doesn’t connect.

Return -2 => Unable to write to serial port.

Return -4 => Request timeout (no response)

Return -13 => Parameter can’t be a NULL pointer.

Remarks
 None

6. VTC7250-7C8 Callback Functions
	RegisterSystemAlarmCallBackFunction
 This function is used to register a callback function for receive system alarm.
Syntax

void RegisterSystemAlarmCallBackFunction(

EventSystemAlarm_CallBack fnESA
);
Parameters
fnESA [in]
[in] Pointer to an application-defined callback function.
 This parameter can be NULL. (unregister callback function)

Return Values
None
Remarks
 None
Example

1. Define callback function

void EventSystemAlarm(unsigned char byAlarm);

2. Register callback function.

RegisterSystemAlarmCallBackFunction(EventSystemAlarm);
3. Add code in callback function.

void EventSystemAlarm(unsigned char byAlarm)
{

 // TODO: Add code here
 if(byAlarm & 0x01) {…}
 if(byAlarm & 0x02) {…}
 if(byAlarm & 0x04) {…}
 if(byAlarm & 0x08) {…}
}

	EventSystemAlarm_CallBack
 EventSystemAlarm_CallBack is used to define a callback.
 Callback functions respond when system alarm.

Syntax

void (*EventSystemAlarm_CallBack)(unsigned char byAlarm);
Parameters
byAlarm [in]
Bit
Value
Meaning
Bit0
0
Normal
1
Over voltage
Bit1
0
Normal
1
Lower voltage
Bit2
0
Normal
1
Over temperature
Bit3
0
Normal
1
Lower temperature
Bit4
0
Normal
1
Fan error
Bit5
0
Normal
1
POE Power Error
Return Values
None
Remarks
 None

	RegisterKeyCallBackFunction
 This function is used to register a callback function for receive key event.
When press sleep button the callback function will be called.

Syntax

void RegisterKeyCallBackFunction(

EventSystemSleepKey_CallBack fnESSK
);
Parameters
fnESSK [in]
[in] Pointer to an application-defined callback function.
 This parameter can be NULL. (unregister callback function)

Return Values
None
Remarks
 None
Example

1. Define callback function

void EventSystemSleepKey();

2. Register callback function.

RegisterKeyCallBackFunction(EventSystemSleepKey);
3. Add code in callback function.

void BackupBatteryAlarm(unsigned char byAlarm)
{

 // TODO: Add code here
 SetSuspendState(FALSE, TRUE, FALSE);
}

	EventSystemSleepKey_CallBack
 EventSystemSleepKey_CallBack is used to define a callback.
 Callback functions respond when press sleep button.

Syntax

typedef void (*EventSystemSleepKey_CallBack)();
Parameters
 None
Return Values
None
Remarks
 None

	ExBat_RegisterBatteryCallBackFunction
 This function is used to register a VTK62B callback function.
When low battery or over temperature the callback function will be called.

Syntax

void ExBat_RegisterBatteryCallBackFunction(

ExBat_BackupBatteryAlarm_CallBack fnBBA
);
Parameters
fnBBA [in]
[in] Pointer to an application-defined callback function.
 This parameter can be NULL. (unregister callback function)

Return Values
None
Remarks
 This API is used for VTK62B which connect to 2x4 Double Row 8 Pin Connector socket.
Example

1. Define callback function

void ExBat_BackupBatteryAlarm(unsigned char byAlarm);

2. Register callback function.

ExBat_RegisterBatteryCallBackFunction(ExBat_BackupBatteryAlarm);
3. Add code in callback function.

void ExBat_BackupBatteryAlarm(unsigned char byAlarm)
{

 // TODO: Add code here
 If(byAlarm == 0x01) {…}
 If(byAlarm == 0x02) {…}

 If(byAlarm == 0x03) {…}
}

	ExBat_BackupBatteryAlarm_CallBack
 ExBat_BackupBatteryAlarm_CallBack is used to define a VTK62B callback.
 Callback functions respond when low battery or over temperature.

Syntax

typedef void (__stdcall *ExBat_BackupBatteryAlarm_CallBack)(

unsigned char byAlarm
);
Parameters
byAlarm [in]
Bit
Value
Meaning
Bit0
0
Normal
1
Low Backup Battery
Bit1
0
Normal
1
Over Temperature
Bit2
0
Normal
1
Under Temperature
Bit3
0
Normal
1
Vin Lost
Return Values
None
Remarks
 This API is used for VTK62B which connect to 2x4 Double Row 8 Pin Connector socket.

7. G-sensor REGISTER MAP
	Address
	Name
	Type
	Reset Value
	Description

	Hex
	Dec
	
	
	
	

	0x00
	0
	DEVID
	R
	11100101
	Device ID

	0x01 to 0x1C
	1 to 28
	Reserved
	
	
	Reserved; do not access

	0x1D
	29
	THRESH_TAP
	R/W
	00000000
	Tap threshold

	0x1E
	30
	OFSX
	R/W
	00000000
	X-axis offset

	0x1F
	31
	OFSY
	R/W
	00000000
	Y-axis offset

	0x20
	32
	OFSZ
	R/W
	00000000
	Z-axis offset

	0x21
	33
	DUR
	R/W
	00000000
	Tap duration

	0x22
	34
	Latent
	R/W
	00000000
	Tap latency

	0x23
	35
	Window
	R/W
	00000000
	Tap window

	0x24
	36
	THRESH_ACT
	R/W
	00000000
	Activity threshold

	0x25
	37
	THRESH_INACT
	R/W
	00000000
	Inactivity threshold

	0x26
	38
	TIME_INACT
	R/W
	00000000
	Inactivity time

	0x27
	39
	ACT_INACT_CTL
	R/W
	00000000
	Axis enable control for activity and inactivity detection

	0x28
	40
	THRESH_FF
	R/W
	00000000
	Free-fall threshold

	0x29
	41
	TIME_FF
	R/W
	00000000
	Free-fall time

	0x2A
	42
	TAP_AXES
	R/W
	00000000
	Axis control for single tap/double tap

	0x2B
	43
	ACT_TAP_STATUS
	R
	00000000
	Source of single tap/double tap

	0x2C
	44
	BW_RATE
	R/W
	00001010
	Data rate and power mode control

	0x2D
	45
	POWER_CTL
	R/W
	00000000
	Power-saving features control

	0x2E
	46
	INT_ENABLE
	R/W
	00000000
	Interrupt enable control

	0x2F
	47
	INT_MAP
	R/W
	00000000
	Interrupt mapping control

	0x30
	48
	INT_SOURCE
	R
	00000010
	Source of interrupts

	0x31
	49
	DATA_FORMAT
	R/W
	00000000
	Data format control

	0x32
	50
	DATAX0
	R
	00000000
	X-Axis Data 0

	0x33
	51
	DATAX1
	R
	00000000
	X-Axis Data 1

	0x34
	52
	DATAY0
	R
	00000000
	Y-Axis Data 0

	0x35
	53
	DATAY1
	R
	00000000
	Y-Axis Data 1

	0x36
	54
	DATAZ0
	R
	00000000
	Z-Axis Data 0

	0x37
	55
	DATAZ1
	R
	00000000
	Z-Axis Data 1

	0x38
	56
	FIFO_CTL
	R/W
	00000000
	FIFO control

	0x39
	57
	FIFO_STATUS
	R
	00000000
	FIFO status

8. G-sensor register definitions
Register 0x00—DEVID (Read Only)
	D7
	D6
	D5
	D4
	D3
	D2
	D1
	D0

	1
	1
	1
	0
	0
	1
	0
	1

The DEVID register holds a fixed device ID code of 0xE5 (345 octal).
Register 0x1D—THRESH_TAP (Read/Write)
The THRESH_TAP register is eight bits and holds the threshold value for tap interrupts. The data format is unsigned, therefore, the magnitude of the tap event is compared with the value in THRESH_TAP for normal tap detection. The scale factor is 62.5 mg/LSB (that is, 0xFF = 16 g). A value of 0 may result in undesirable behavior if single tap/double tap interrupts are enabled.

Register 0x1E, Register 0x1F, Register 0x20—OFSX, OFSY, OFSZ (Read/Write)
The OFSX, OFSY, and OFSZ registers are each eight bits and offer user-set offset adjustments in twos complement format with a scale factor of 15.6 mg/LSB (that is, 0x7F = 2 g). The value stored in the offset registers is automatically added to the acceleration data, and the resulting value is stored in the output data registers. For additional information regarding offset calibration and the use of the offset registers, refer to the Offset Calibration section.

Register 0x21—DUR (Read/Write)
The DUR register is eight bits and contains an unsigned time value representing the maximum time that an event must be above the THRESH_TAP threshold to qualify as a tap event. The scale factor is 625 μs/LSB. A value of 0 disables the single tap/ double tap functions.

Register 0x22—Latent (Read/Write)
The latent register is eight bits and contains an unsigned time value representing the wait time from the detection of a tap event to the start of the time window (defined by the window register) during which a possible second tap event can be detected. The scale factor is 1.25 ms/LSB. A value of 0 disables the double tap function.

Register 0x23—Window (Read/Write)
The window register is eight bits and contains an unsigned time value representing the amount of time after the expiration of the latency time (determined by the latent register) during which a second valid tap can begin. The scale factor is 1.25 ms/LSB. A value of 0 disables the double tap function.

Register 0x24—THRESH_ACT (Read/Write)
The THRESH_ACT register is eight bits and holds the threshold value for detecting activity. The data format is unsigned, so the magnitude of the activity event is compared with the value in the THRESH_ACT register. The scale factor is 62.5 mg/LSB. A value of 0 may result in undesirable behavior if the activity interrupt is enabled.

Register 0x25—THRESH_INACT (Read/Write)
The THRESH_INACT register is eight bits and holds the threshold value for detecting inactivity. The data format is unsigned, so the magnitude of the inactivity event is compared with the value in the THRESH_INACT register. The scale factor is 62.5 mg/LSB. A value of 0 may result in undesirable behavior if the inactivity interrupt is enabled.

Register 0x26—TIME_INACT (Read/Write)
The TIME_INACT register is eight bits and contains an unsigned time value representing the amount of time that acceleration must be less than the value in the THRESH_INACT register for inactivity to be declared. The scale factor is 1 sec/LSB. Unlike the other interrupt functions, which use unfiltered data (see the Threshold section), the inactivity function uses filtered output data. At least one output sample must be generated for the inactivity interrupt to be triggered. This results in the function appearing unresponsive if the TIME_INACT register is set to a value less than the time constant of the output data rate. A value of 0 results in an interrupt when the output data is less than the value in the THRESH_INACT register.

Register 0x27—ACT_INACT_CTL (Read/Write)
	D7
	D6
	D5
	D4

	ACT ac/dc
	ACT_X enable
	ACT_Y enable
	ACT_Z enable

	D3
	D2
	D1
	D0

	INACT ac/dc
	INACT_X enable
	INACT_Y enable
	INACT_Z enable

ACT AC/DC and INACT AC/DC Bits
A setting of 0 selects dc-coupled operation, and a setting of 1 enables ac-coupled operation. In dc-coupled operation, the current acceleration magnitude is compared directly with THRESH_ACT and THRESH_INACT to determine whether activity or inactivity is detected.

In ac-coupled operation for activity detection, the acceleration value at the start of activity detection is taken as a reference value. New samples of acceleration are then compared to this reference value, and if the magnitude of the difference exceeds the THRESH_ACT value, the device triggers an activity interrupt.

Similarly, in ac-coupled operation for inactivity detection, a reference value is used for comparison and is updated whenever the device exceeds the inactivity threshold. After the reference value is selected, the device compares the magnitude of the difference between the reference value and the current acceleration with THRESH_INACT. If the difference is less than the value in THRESH_INACT for the time in TIME_INACT, the device is considered inactive and the inactivity interrupt is triggered.

ACT_x Enable Bits and INACT_x Enable Bits
A setting of 1 enables x-, y-, or z-axis participation in detecting activity or inactivity. A setting of 0 excludes the selected axis from participation. If all axes are excluded, the function is disabled. For activity detection, all participating axes are logically OR’ed, causing the activity function to trigger when any of the partici-pating axes exceeds the threshold. For inactivity detection, all participating axes are logically AND’ed, causing the inactivity function to trigger only if all participating axes are below the threshold for the specified time.

Register 0x28—THRESH_FF (Read/Write)
The THRESH_FF register is eight bits and holds the threshold value, in unsigned format, for free-fall detection. The acceleration on all axes is compared with the value in THRESH_FF to determine if a free-fall event occurred. The scale factor is 62.5 mg/LSB. Note that a value of 0 mg may result in undesirable behavior if the free-fall interrupt is enabled. Values between 300 mg and 600 mg (0x05 to 0x09) are recommended.

Register 0x29—TIME_FF (Read/Write)
The TIME_FF register is eight bits and stores an unsigned time value representing the minimum time that the value of all axes must be less than THRESH_FF to generate a free-fall interrupt. The scale factor is 5 ms/LSB. A value of 0 may result in undesirable behavior if the free-fall interrupt is enabled. Values between 100 ms and 350 ms (0x14 to 0x46) are recommended.

Register 0x2A—TAP_AXES (Read/Write)
	D7
	D6
	D5
	D4
	D3
	D2
	D1
	D0

	0
	0
	0
	0
	Suppress
	TAP_X enable
	TAP_Y enable
	TAP_Z enable

Suppress Bit
Setting the suppress bit suppresses double tap detection if acceleration greater than the value in THRESH_TAP is present between taps. See the Tap Detection section for more details.

TAP_x Enable Bits
A setting of 1 in the TAP_X enable, TAP_Y enable, or TAP_Z enable bit enables x-, y-, or z-axis participation in tap detection. A setting of 0 excludes the selected axis from participation in tap detection.

Register 0x2B—ACT_TAP_STATUS (Read Only)
	D7
	D6
	D5
	D4
	D3
	D2
	D1
	D0

	0
	ACT_X source
	ACT_Y source
	ACT_Z source
	Asleep
	TAP_X source
	TAP_Y source
	TAP_Z source

ACT_x Source and TAP_x Source Bits
These bits indicate the first axis involved in a tap or activity event. A setting of 1 corresponds to involvement in the event, and a setting of 0 corresponds to no involvement. When new data is available, these bits are not cleared but are overwritten by the new data. The ACT_TAP_STATUS register should be read before clearing the interrupt. Disabling an axis from participation clears the corresponding source bit when the next activity or single tap/double tap event occurs.

Asleep Bit
A setting of 1 in the asleep bit indicates that the part is asleep, and a setting of 0 indicates that the part is not asleep. This bit toggles only if the device is configured for auto sleep. See the AUTO_SLEEP Bit section for more information on autosleep mode.

Register 0x2C—BW_RATE (Read/Write)
	D7
	D6
	D5
	D4
	D3
	D2
	D1
	D0

	0
	0
	0
	LOW_POWER
	Rate

LOW_POWER Bit
A setting of 0 in the LOW_POWER bit selects normal operation, and a setting of 1 selects reduced power operation, which has somewhat higher noise (see the Power Modes section for details).

Rate Bits
These bits select the device bandwidth and output data rate (see Table 7 and Table 8 for details). The default value is 0x0A, which translates to a 100 Hz output data rate. An output data rate should be selected that is appropriate for the communication protocol and frequency selected. Selecting too high of an output data rate with a low communication speed results in samples being discarded.

Register 0x2D—POWER_CTL (Read/Write)
	D7
	D6
	D5
	D4
	D3
	D2
	D1
	D0

	0
	0
	Link
	AUTO_SLEEP
	Measure
	Sleep
	Wakeup

Link Bit
A setting of 1 in the link bit with both the activity and inactivity functions enabled delays the start of the activity function until inactivity is detected. After activity is detected, inactivity detection begins, preventing the detection of activity. This bit serially links the activity and inactivity functions. When this bit is set to 0, the inactivity and activity functions are concurrent. Additional information can be found in the Link Mode section.

When clearing the link bit, it is recommended that the part be placed into standby mode and then set back to measurement mode with a subsequent write. This is done to ensure that the device is properly biased if sleep mode is manually disabled; otherwise, the first few samples of data after the link bit is cleared may have additional noise, especially if the device was asleep when the bit was cleared.

AUTO_SLEEP Bit
If the link bit is set, a setting of 1 in the AUTO_SLEEP bit enables the auto-sleep functionality. In this mode, the ADXL345 auto-matically switches to sleep mode if the inactivity function is enabled and inactivity is detected (that is, when acceleration is below the THRESH_INACT value for at least the time indicated by TIME_INACT). If activity is also enabled, the ADXL345 automatically wakes up from sleep after detecting activity and returns to operation at the output data rate set in the BW_RATE register. A setting of 0 in the AUTO_SLEEP bit disables automatic switching to sleep mode. See the description of the Sleep Bit in this section for more information on sleep mode.

If the link bit is not set, the AUTO_SLEEP feature is disabled and setting the AUTO_SLEEP bit does not have an impact on device operation. Refer to the Link Bit section or the Link Mode section for more information on utilization of the link feature.

When clearing the AUTO_SLEEP bit, it is recommended that the part be placed into standby mode and then set back to measure-ment mode with a subsequent write. This is done to ensure that the device is properly biased if sleep mode is manually disabled; otherwise, the first few samples of data after the AUTO_SLEEP bit is cleared may have additional noise, especially if the device was asleep when the bit was cleared.

Measure Bit
A setting of 0 in the measure bit places the part into standby mode, and a setting of 1 places the part into measurement mode. The ADXL345 powers up in standby mode with minimum power consumption.

Sleep Bit
A setting of 0 in the sleep bit puts the part into the normal mode of operation, and a setting of 1 places the part into sleep mode. Sleep mode suppresses DATA_READY, stops transmission of data to FIFO, and switches the sampling rate to one specified by the wakeup bits. In sleep mode, only the activity function can be used. When the DATA_READY interrupt is suppressed, the output data registers (Register 0x32 to Register 0x37) are still updated at the sampling rate set by the wakeup bits (D1:D0).

When clearing the sleep bit, it is recommended that the part be placed into standby mode and then set back to measurement mode with a subsequent write. This is done to ensure that the device is properly biased if sleep mode is manually disabled; otherwise, the first few samples of data after the sleep bit is cleared may have additional noise, especially if the device was asleep when the bit was cleared.

Wakeup Bits
These bits control the frequency of readings in sleep mode as described in Table 20.

Table 20. Frequency of Readings in Sleep Mode
	Setting
	Frequency (Hz)

	D1
	D0
	

	0
	0
	8

	0
	1
	4

	1
	0
	2

	1
	1
	1

Register 0x2E—INT_ENABLE (Read/Write)
	D7
	D6
	D5
	D4

	DATA_READY
	SINGLE_TAP
	DOUBLE_TAP
	Activity

	D3
	D2
	D1
	D0

	Inactivity
	FREE_FALL
	Watermark
	Overrun

Setting bits in this register to a value of 1 enables their respective functions to generate interrupts, whereas a value of 0 prevents the functions from generating interrupts. The DATA_READY, watermark, and overrun bits enable only the interrupt output; the functions are always enabled. It is recommended that interrupts be configured before enabling their outputs.

Register 0x2F—INT_MAP (R/) W
	D7
	D6
	D5
	D4

	DATA_READY
	SINGLE_TAP
	DOUBLE_TAP
	Activity

	D3
	D2
	D1
	D0

	Inactivity
	FREE_FALL
	Watermark
	Overrun

Any bits set to 0 in this register send their respective interrupts to the INT1 pin, whereas bits set to 1 send their respective interrupts to the INT2 pin. All selected interrupts for a given pin are OR’ed.

Register 0x30—INT_SOURCE (Read Only)
	D7
	D6
	D5
	D4

	DATA_READY
	SINGLE_TAP
	DOUBLE_TAP
	Activity

	D3
	D2
	D1
	D0

	Inactivity
	FREE_FALL
	Watermark
	Overrun

Bits set to 1 in this register indicate that their respective functions have triggered an event, whereas a value of 0 indicates that the corresponding event has not occurred. The DATA_READY, watermark, and overrun bits are always set if the corresponding events occur, regardless of the INT_ENABLE register settings, and are cleared by reading data from the DATAX, DATAY, and DATAZ registers. The DATA_READY and watermark bits may require multiple reads, as indicated in the FIFO mode descriptions in the FIFO section. Other bits, and the corresponding interrupts, are cleared by reading the INT_SOURCE register.

Register 0x31—DATA_FORMAT (Read/Write)
	D7
	D6
	D5
	D4
	D3
	D2
	D1
	D0

	SELF_TEST
	SPI
	INT_INVERT
	0
	FULL_RES
	Justify
	Range

The DATA_FORMAT register controls the presentation of data to Register 0x32 through Register 0x37. All data, except that for the ±16 g range, must be clipped to avoid rollover.

SELF_TEST Bit
A setting of 1 in the SELF_TEST bit applies a self-test force to the sensor, causing a shift in the output data. A value of 0 disables the self-test force.

SPI Bit
A value of 1 in the SPI bit sets the device to 3-wire SPI mode, and a value of 0 sets the device to 4-wire SPI mode.

INT_INVERT Bit
A value of 0 in the INT_INVERT bit sets the interrupts to active high, and a value of 1 sets the interrupts to active low.

FULL_RES Bit
When this bit is set to a value of 1, the device is in full resolution mode, where the output resolution increases with the g range set by the range bits to maintain a 4 mg/LSB scale factor. When the FULL_RES bit is set to 0, the device is in 10-bit mode, and the range bits determine the maximum g range and scale factor.

Justify Bit
A setting of 1 in the justify bit selects left-justified (MSB) mode, and a setting of 0 selects right-justified mode with sign extension.

Range Bits
These bits set the g range as described in Table 21.

Table 21. g Range Setting
	Setting
	g Range

	D1
	D0
	

	0
	0
	±2 g

	0
	1
	±4 g

	1
	0
	±8 g

	1
	1
	±16 g

Register 0x32 to Register 0x37—DATAX0, DATAX1, DATAY0, DATAY1, DATAZ0, DATAZ1 (Read Only)
These six bytes (Register 0x32 to Register 0x37) are eight bits each and hold the output data for each axis. Register 0x32 and Register 0x33 hold the output data for the x-axis, Register 0x34 and Register 0x35 hold the output data for the y-axis, and Register 0x36 and Register 0x37 hold the output data for the z-axis. The output data is twos complement, with DATAx0 as the least significant byte and DATAx1 as the most significant byte, where x represent X, Y, or Z. The DATA_FORMAT register (Address 0x31) controls the format of the data. It is recommended that a multiple-byte read of all registers be performed to prevent a change in data between reads of sequential registers.

Register 0x38—FIFO_CTL (Read/Write)
	D7
	D6
	D5
	D4
	D3
	D2
	D1
	D0

	FIFO_MODE
	Trigger
	Samples

FIFO_MODE Bits
These bits set the FIFO mode, as described in Table 22.
Table 22. FIFO Modes
	Setting
	Setting

	D7
	D6
	Mode
	Function

	0
	0
	Bypass
	FIFO is bypassed.

	0
	1
	FIFO
	FIFO collects up to 32 values and then stops collecting data, collecting new data only when FIFO is not full.

	1
	0
	Stream
	FIFO holds the last 32 data values. When FIFO is full, the oldest data is overwritten with newer data.

	1
	1
	Trigger
	When triggered by the trigger bit, FIFO holds the last data samples before the trigger event and then continues to collect data until full. New data is collected only when FIFO is not full.

Trigger Bit
A value of 0 in the trigger bit links the trigger event of trigger mode to INT1, and a value of 1 links the trigger event to INT2.

Samples Bits
The function of these bits depends on the FIFO mode selected (see Table 23). Entering a value of 0 in the samples bits immediately sets the watermark status bit in the INT_SOURCE register, regardless of which FIFO mode is selected. Undesirable operation may occur if a value of 0 is used for the samples bits when trigger mode is used.

Table 23. Samples Bits Functions
	FIFO Mode
	Samples Bits Function

	Bypass
	None.

	FIFO
	Specifies how many FIFO entries are needed to trigger a watermark interrupt.

	Stream
	Specifies how many FIFO entries are needed to trigger a watermark interrupt.

	Trigger
	Specifies how many FIFO samples are retained in the FIFO buffer before a trigger event.

0x39—FIFO_STATUS (Read Only)
	D7
	D6
	D5
	D4
	D3
	D2
	D1
	D0

	FIFO_TRIG
	0
	Entries

FIFO_TRIG Bit
A 1 in the FIFO_TRIG bit corresponds to a trigger event occurring, and a 0 means that a FIFO trigger event has not occurred.

Entries Bits
These bits report how many data values are stored in FIFO. Access to collect the data from FIFO is provided through the DATAX, DATAY, and DATAZ registers. FIFO reads must be done in burst or multiple-byte mode because each FIFO level is cleared after any read (single- or multiple-byte) of FIFO. FIFO stores a maximum of 32 entries, which equates to a maximum of 33 entries available at any given time because an additional entry is available at the output filter of the device.

