

NEXCOM International Co., Ltd.

Industrial Computing Solutions Fan-less Computer NISE 2100, NISE 2100A, NISE 2110, NISE 2110A

User Manual

Contents

Preface

Copyright	i\
Disclaimer	i
Acknowledgements	i
Regulatory Compliance Statements	
Declaration of Conformity	
RoHS Compliance	
Warranty and RMA	
Safety Information	
Installation Recommendations	
Safety Precautions	vii
Technical Support and Assistance	
Conventions Used in this Manual	i)
Global Service Contact Information)
Package Contents	xi
Ordering Information	
Chapter 1: Product Introduction	
Overview	
NISE 2100/2100A	
NISE 2110/2110A	
Hardware Specifications	3
Getting to Know NISE 2100/2110 Series	
Mechanical Dimensions	C

Chapter 2: Jumpers And Connectors

Before You Begin	13
Precautions	13
Jumper Settings	14
Locations of the Jumpers and Connectors	15
Jumpers	17
Clear CMOS	17
COM3 RS232 RI Pin Power Select	17
Panel CCFL LVDS Backlight Power Select	18
Connector Pin Definitions	19
External I/O Interface - Front Panel	19
USB Ports	19
COM5 Serial Port	19
COM6 Serial Port	20
GPIO Connector	20
Status Indicators	21
ATX Power On/Off Switch	21
External I/O Interface - Rear Panel	22
9-36V DC Input	22
Remote Power On/Off Switch	22
VGA Port	23
Speaker-out Jack	23
LAN1 and LAN2 Ports	24
LAN3 (NISE 2100/2110 only) and Dual USB Ports	25

COM1 and COM2 Ports26
COM3 and COM4 Ports27
USB 8-9 Connector27
Internal Connectors28
COM5 Connector28
COM6 Connector28
Remote Power On/Off Switch29
CPU Fan Connector29
Internal Power/HDD/LAN Power/LAN Active LED (RTC Connector)30
SMBus Pin Header30
Mic-in Connector31
Power Output Connector31
LVDS Connector32
Panel CCFL Connector32
CompactFlash33
Mini-PCle Slot34
PCI Slot (Low Profile)35
Chapter 3: System Setup
Removing the Chassis Cover
Installing a SODIMM
Installing a Wireless LAN Module
Installing a SATA Hard Drive (NISE 2100/2100A)41
Installing a SATA Hard Drive (NISE 2110/2110A)44
Installing a SATA DOM48
Installing a CompactFlash Card49
Chapter 4: BIOS Setup
About BIOS Setup52
When to Configure the BIOS52
Default Configuration

-ntering Setup	5 .
_egends	5
BIOS Setup Utility	54
Main	5
Advanced	5
Boot	6
Chipset	6
PCIPnP	6
Security	6
Exit	6
Appendix A: Power Consumption Test Configuration Power Consumption Measurement	
Appendix B: GPI/O Programming Guide	
8 - GPI/O Connector	7
GPI/O Programming Sample Code	
- · · · · · · · · · · · · · · · · · · ·	
Appendix C: Watchdog Timer Setting	
Watchdog Timer Setting	7
TE8783 WatchDog Programming Guide	
5 5 5	

Preface

Copyright

This publication, including all photographs, illustrations and software, is protected under international copyright laws, with all rights reserved. No part of this manual may be reproduced, copied, translated or transmitted in any form or by any means without the prior written consent from NEXCOM International Co., Ltd.

Disclaimer

The information in this document is subject to change without prior notice and does not represent commitment from NEXCOM International Co., Ltd. However, users may update their knowledge of any product in use by constantly checking its manual posted on our website: http://www.nexcom.com. NEXCOM shall not be liable for direct, indirect, special, incidental, or consequential damages arising out of the use of any product, nor for any infringements upon the rights of third parties, which may result from such use. Any implied warranties of merchantability or fitness for any particular purpose is also disclaimed.

Acknowledgements

NISE 2100/2110 Series is a trademark of NEXCOM International Co., Ltd. All other product names mentioned herein are registered trademarks of their respective owners.

Regulatory Compliance Statements

This section provides the FCC compliance statement for Class A devices and describes how to keep the system CE compliant.

Declaration of Conformity

FCC

This equipment has been tested and verified to comply with the limits for a Class A digital device, pursuant to Part 15 of FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. Operation of this equipment in a residential area (domestic environment) is likely to cause harmful interference, in which case the user will be required to correct the interference (take adequate measures) at their own expense.

CE

The product(s) described in this manual complies with all applicable European Union (CE) directives if it has a CE marking. For computer systems to remain CE compliant, only CE-compliant parts may be used. Maintaining CE compliance also requires proper cable and cabling techniques.

RoHS Compliance

NEXCOM RoHS Environmental Policy and Status Update

NEXCOM is a global citizen for building the digital infrastructure. We are committed to providing green products and services, which are compliant with European Union

RoHS (Restriction on Use of Hazardous Substance in Electronic Equipment) directive 2002/95/EU, to be your trusted green partner and to protect our environment.

RoHS restricts the use of Lead (Pb) < 0.1% or 1,000ppm, Mercury (Hg) < 0.1% or 1,000ppm, Cadmium (Cd) < 0.01% or 100ppm, Hexavalent Chromium (Cr6+) < 0.1% or 1,000ppm, Polybrominated biphenyls (PBB) < 0.1% or 1,000ppm, and Polybrominated diphenyl Ethers (PBDE) < 0.1% or 1,000ppm.

In order to meet the RoHS compliant directives, NEXCOM has established an engineering and manufacturing task force in to implement the introduction of green products. The task force will ensure that we follow the standard NEXCOM development procedure and that all the new RoHS components and new manufacturing processes maintain the highest industry quality levels for which NEXCOM are renowned.

The model selection criteria will be based on market demand. Vendors and suppliers will ensure that all designed components will be RoHS compliant.

How to recognize NEXCOM RoHS Products?

For existing products where there are non-RoHS and RoHS versions, the suffix "(LF)" will be added to the compliant product name.

All new product models launched after January 2006 will be RoHS compliant. They will use the usual NEXCOM naming convention.

Warranty and RMA

NEXCOM Warranty Period

NEXCOM manufactures products that are new or equivalent to new in accordance with industry standard. NEXCOM warrants that products will be free from defect in material and workmanship for 2 years, beginning on the date of invoice by NEXCOM. HCP series products (Blade Server) which are manufactured by NEXCOM are covered by a three year warranty period.

NEXCOM Return Merchandise Authorization (RMA)

- ▼ Customers shall enclose the "NEXCOM RMA Service Form" with the returned packages.
- ★ Customers must collect all the information about the problems encountered and note anything abnormal or, print out any on-screen messages, and describe the problems on the "NEXCOM RMA Service Form" for the RMA number apply process.
- ⚠ Customers can send back the faulty products with or without accessories (manuals, cable, etc.) and any components from the card, such as CPU and RAM. If the components were suspected as part of the problems, please note clearly which components are included. Otherwise, NEXCOM is not responsible for the devices/parts.
- ➤ Customers are responsible for the safe packaging of defective products, making sure it is durable enough to be resistant against further damage and deterioration during transportation. In case of damages occurred during transportation, the repair is treated as "Out of Warranty."

Any products returned by NEXCOM to other locations besides the customers' site will bear an extra charge and will be billed to the customer.

Repair Service Charges for Out-of-Warranty Products

NEXCOM will charge for out-of-warranty products in two categories, one is basic diagnostic fee and another is component (product) fee.

System Level

- ▼ Component fee: NEXCOM will only charge for main components such as SMD chip, BGA chip, etc. Passive components will be repaired for free, ex: resistor, capacitor.
- ▼ Items will be replaced with NEXCOM products if the original one cannot be repaired. Ex: motherboard, power supply, etc.
- Replace with 3rd party products if needed.
- ▶ If RMA goods can not be repaired, NEXCOM will return it to the customer without any charge.

Board Level

- ★ Component fee: NEXCOM will only charge for main components, such as SMD chip, BGA chip, etc. Passive components will be repaired for free, ex: resistors, capacitors.
- \blacksquare If RMA goods can not be repaired, NEXCOM will return it to the customer without any charge.

Warnings

Read and adhere to all warnings, cautions, and notices in this guide and the documentation supplied with the chassis, power supply, and accessory modules. If the instructions for the chassis and power supply are inconsistent with these instructions or the instructions for accessory modules, contact the supplier to find out how you can ensure that your computer meets safety and regulatory requirements.

Cautions

Electrostatic discharge (ESD) can damage system components. Do the described procedures only at an ESD workstation. If no such station is available, you can provide some ESD protection by wearing an antistatic wrist strap and attaching it to a metal part of the computer chassis.

Safety Information

Before installing and using the device, note the following precautions:

- Read all instructions carefully.
- Do not place the unit on an unstable surface, cart, or stand.
- Follow all warnings and cautions in this manual.
- When replacing parts, ensure that your service technician uses parts specified by the manufacturer.
- Avoid using the system near water, in direct sunlight, or near a heating device.
- The load of the system unit does not solely rely for support from the rackmounts located on the sides. Firm support from the bottom is highly necessary in order to provide balance stability.
- The computer is provided with a battery-powered real-time clock circuit. There is a danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended by the manufacturer. Discard used batteries according to the manufacturer's instructions.

Installation Recommendations

Ensure you have a stable, clean working environment. Dust and dirt can get into components and cause a malfunction. Use containers to keep small components separated.

Adequate lighting and proper tools can prevent you from accidentally damaging the internal components. Most of the procedures that follow require only a few simple tools, including the following:

- A Philips screwdriver
- A flat-tipped screwdriver
- A grounding strap
- An anti-static pad

Using your fingers can disconnect most of the connections. It is recommended that you do not use needlenose pliers to disconnect connections as these can damage the soft metal or plastic parts of the connectors.

Safety Precautions

- 1. Read these safety instructions carefully.
- 2. Keep this User Manual for later reference.
- 3. Disconnect this equipment from any AC outlet before cleaning. Use a damp cloth. Do not use liquid or spray detergents for cleaning.
- 4. For plug-in equipment, the power outlet socket must be located near the equipment and must be easily accessible.
- 5. Keep this equipment away from humidity.
- 6. Put this equipment on a stable surface during installation. Dropping it or letting it fall may cause damage.
- 7. Do not leave this equipment in either an unconditioned environment or in a above 40°C storage temperature as this may damage the equipment.
- 8. The openings on the enclosure are for air convection to protect the equipment from overheating. DO NOT COVER THE OPENINGS.
- 9. Make sure the voltage of the power source is correct before connecting the equipment to the power outlet.
- 10. Place the power cord in a way so that people will not step on it. Do not place anything on top of the power cord. Use a power cord that has been approved for use with the product and that it matches the voltage and current marked on the product's electrical range label. The voltage and current rating of the cord must be greater than the voltage and current rating marked on the product.
- 11. All cautions and warnings on the equipment should be noted.

- 12. If the equipment is not used for a long time, disconnect it from the power source to avoid damage by transient overvoltage.
- 13. Never pour any liquid into an opening. This may cause fire or electrical shock
- 14. Never open the equipment. For safety reasons, the equipment should be opened only by qualified service personnel.
- 15. If one of the following situations arises, get the equipment checked by service personnel:
 - a. The power cord or plug is damaged.
 - b. Liquid has penetrated into the equipment.
 - c. The equipment has been exposed to moisture.
 - d. The equipment does not work well, or you cannot get it to work according to the user's manual.
 - e. The equipment has been dropped and damaged.
 - f. The equipment has obvious signs of breakage.
- 16. Do not place heavy objects on the equipment.
- 17. The unit uses a three-wire ground cable which is equipped with a third pin to ground the unit and prevent electric shock. Do not defeat the purpose of this pin. If your outlet does not support this kind of plug, contact your electrician to replace your obsolete outlet.
- 18. CAUTION: DANGER OF EXPLOSION IF BATTERY IS INCORRECTLY REPLACED. REPLACE ONLY WITH THE SAME OR EQUIVALENT TYPE RECOMMENDED BY THE MANUFACTURER. DISCARD USED BATTERIES ACCORDING TO THE MANUFACTURER'S INSTRUCTIONS.
- 19. The computer is provided with CD drives that comply with the appropriate safety standards including IEC 60825.

Technical Support and Assistance

- For the most updated information of NEXCOM products, visit NEX-COM's website at www.nexcom.com.
- 2. For technical issues that require contacting our technical support team or sales representative, please have the following information ready before calling:
 - Product name and serial number
 - Detailed information of the peripheral devices
 - Detailed information of the installed software (operating system, version, application software, etc.)
 - A complete description of the problem
 - The exact wordings of the error messages

Warning!

- Handling the unit: carry the unit with both hands and handle it with care.
- 2. Maintenance: to keep the unit clean, use only approved cleaning products or clean with a dry cloth.
- 3. CompactFlash: Turn off the unit's power before inserting or removing a CompactFlash storage card.

Conventions Used in this Manual

Warning: Information about certain situations, which if not observed, can cause personal injury. This will prevent injury to yourself when performing a task.

Caution: Information to avoid damaging components or losing data.

Note: Provides additional information to complete a task easily.

Global Service Contact Information

Headquarters NEXCOM International Co., Ltd.

15F, No. 920, Chung-Cheng Rd., ZhongHe District, New Taipei City, 23586, Taiwan, R O C

Tel: +886-2-8226-7786 Fax: +886-2-8226-7782 www.nexcom.com.tw

America USA NEXCOM USA

2883 Bayview Drive, Fremont CA 94538, USA Tel: +1-510-656-2248 Fax: +1-510-656-2158 Email: sales@nexcom.com

Asia Taiwan Taichung Office

16F, No.250, Sec. 2, Chongde Rd., Beitun Dist., Taichung City 406, R.O.C. Tel: +886-4-2249-1179 Fax: +886-4-2249-1172 www.nexcom.com.tw

NEXCOM Japan

9F, Tamachi Hara Bldg.,4-11-5, Shiba Minato-ku, Tokyo, 108-0014, Japan Tel: +81-3-5419-7830 Fax: +81-3-5419-7832 Email: sales@nexcom-jp.com www.nexcom-jp.com

China NEXCOM China

2F, Block 4, Venus Plaza, Building 21, ZhongGuanCun Software Park, No.8, Dongbeiwang West Road, Haidian District, Beijing, 100193, China Tel: +86-10-8282-5880 Fax: +86-10-8282-5955 Email: sales@nexcom.cn

Shanghai Office

Room 1505, Greenland He Chuang Bldg., No. 450 Caoyang Rd., Shanghai, 200062, China Tel: +86-21-6150-8008 Fax: +86-21-3251-6358 Email: sales@nexcom.cn www.nexcom.cn

Nanjing Office

Hall C, Block 17, Tian Xing Cui Lang Bldg., No. 49 Yunnan North Rd., Nanjing, 210018, China Tel: +86-25-8315-3486 Fax: +86-25-8315-3489 Email: sales@nexcom.cn

Shenzhen Office

Western Room 708, Block 210, Tairan Industry & Trading Place, Futian Area, Shenzhen, 518040, China Tel: +86-755-833 7203 Fax: +86-755-833 7213 Email: sales@nexcom.cn

Wuhan Office

1-C1804/1805,Mingze Liwan, No.519 South Luoshi Rd,Hongshan District, Wuhan,430070,China Tel: +86-27-8722-7400 Fax: +86-27-8722-7400 Email: sales@nexcom.cn www.nexcom.cn

Chengdu Office

9F, Shuxiangxie, Xuefu Garden, No.12 Section 1, South Yihuan Rd., Chengdu, 610061, China Tel: +86-28-8523-0186

Fax: +86-28-8523-0186 Email: sales@nexcom.cn

www.nexcom.cn

EuropeFrance NEXCOM France

La Grande Arche-Paroi Nord 92044 Paris La Défense France

Tel: +33 (0) 1 40 90 33 35 Fax: +33 (0) 1 40 90 31 01 Email: sales.fr@nexcom.eu

www.nexcom.eu

Germany

NEXCOM GmbH Leopoldstraße Business Centre, Leopoldstraße 244, 80807 Munich, Germany Tel: +49-89-208039-278

Fax: +49-89-208039-279
Fmail: sales de@nexcom eu

www.nexcom.eu

Italy

NEXCOM ITALIA S.r.I Via Gaudenzio Ferrari 29, 21047 Saronno (VA), Italia Tel: +39 02 9628 0333 Fax: +39 02 9286 9215

Email: nexcomitalia@nexcom.eu

www.nexcomitalia.it

United Kingdom NEXCOM EUROPE

10 Vincent Avenue, Crownhill Business Centre, Milton Keynes, Buckinghamshire MK8 0AB, United Kingdom Tel: +44-1908-267121

Fax: +44-1908-262042 Fmail: sales uk@nexcom eu

www.nexcom.eu

Package Contents

Before continuing, verify that the NISE 2100/2110 Series package that you received is complete. Your package should have all the items listed in the following table.

Item	Part Number	Description	
1	50311F0110X00	(H)FLAT HEAD SCREW LONG FEI:F3x5ISO+NYLOK NIGP	
2	602DCD0337X00	(N)NISE2100 CD DRIVER VER:2.0	1
3	60177A0223X00	(N)NISE2100 QUICK REFERENCE GUIDE VER:A	1
4	4NCPF00310X00	(N)TERMINAL BLOCKS 3P PHOENIX CONTACT:1803581	1
5	4NCPF00204X00	TERMINAL BLOCKS 2P PHOENIX CONTACT:1777989	1

Ordering Information

The following provides ordering information for NISE 2100/2110 Series.

Barebone

NISE 2100 (P/N: 10J00210000X0)

- Intel® Atom™ D525 fanless barebone system with DDR3 SODIMM socket and optional wireless module support (either WiFi or mobile wireless)
- 19V 65W AC/DC power adapter w/o power cord (P/N: 7400065009X00)

Barebone

NISE 2100A (P/N: 10J00210001X0)

- Intel® Atom™ D525 fanless barebone system with DDR3 SODIMM socket and optional wireless module support (either WiFi or mobile wireless)
- 19V 65W AC/DC power adapter w/o power cord (P/N: 7400065009X00)

• Barebone

NISE 2110 (P/N: 10J00211000X0)

- Intel® Atom™ D525 fanless barebone system with DDR3 SODIMM socket, one PCI expansion, and optional wireless module support (either WiFi or mobile wireless)
- 19V 65W AC/DC power adapter w/o power cord (P/N: 7400065009X00)

Barebone

NISE 2110A (P/N: 10J00211001X0)

- Intel® Atom™ D525 fanless barebone system with DDR3 SODIMM socket, one PCI expansion, and optional wireless module support (either WiFi or mobile wireless)
- 19V 65W AC/DC power adapter w/o power cord (P/N: 7400065009X00)

Chapter 1: Product Introduction

Overview

NISE 2100/2100A

Rear: NISE 2100A

Key Features

- Onboard Intel® Atom™ Dual Core D525 (1.8GHz, 1M cache) processor
- One DDR3 SODIMM socket, DDR3 800, maximum of 2GB memory module
- 3 x Intel[®] 1000/100/10 Mbps LAN ports (NISE 2100)
 2 x Intel[®] 1000/100/10 Mbps LAN ports (NISE 2100A)
- 4 x USB 2.0

- 1 x VGA
- 1 x DB15 GPIO connector
- 4 x RS232 and 2 x RS232/422/485 with auto flow control
- One external CF socket
- One external SIM card holder
- 9 ~ 36V DC input
- ATX power mode

NISE 2110/2110A

Key Features

- Onboard Intel® Atom™ Dual Core D525 (1.8GHz, 1M cache) processor
- One DDR3 SODIMM socket, DDR3 800, maximum of 2GB memory module
- 3 x Intel® 1000/100/10 Mbps LAN ports (NISE 2110) 2 x Intel® 1000/100/10 Mbps LAN ports (NISE 2110A)
- 4 x USB 2.0
- 1 x VGA

- 1 x DB15 GPIO connector
- 4 x RS232 and 2 x RS232/422/485 with auto flow control
- One external CF socket
- One external SIM card holder
- 9 ~ 36V DC input
- ATX power mode
- 1 x PCI Expansion Slot

Hardware Specifications

Main Board

- NISB 2100 (NISE 2100/2110)
 NISB 2100A (NISE 2100A/2110A)
- Onboard Intel® Atom™ D525 dual core processor, 1.8GHz, 1M cache
- Intel® ICH8M PCH

Main Memory

- One DDR3 SODIMM socket
- Supports up to 2GB DDR3 800 SDRAM memory module, unbuffered, non-ECC.

Expansion

- NISE 2100/2100A
 - One Mini-PCle socket (for optional WiFi or mobile wireless module)
- NISF 2110/2110A
 - 1 x PCI expansion
 - One Mini-PCle socket (for optional WiFi or mobile wireless module)

I/O Interface - Front

- ATX Power on/off switch
- HDD access / Power status LEDs
- 1 x DB15 GPIO connector
- 2 x Serial ports (RS232)
- 2 x USB 2.0 ports
- 1 x CompactFlash socket
- 1 x external SIM card holder
- 2 x antenna holes (for optional WiFi or mobile wireless module)

I/O Interface - Rear

- 9~36V DC input
- 1 x 3-pin connector for remote power on/off switch
- 1 x DB15 VGA port
- 1 x speaker-out jack
- 3 x Intel® GbE LAN ports (NISE 2100/2110)
 2 x Intel® GbE LAN ports (NISE 2100A/2110A)
- 2 x USB 2.0 ports
- 4 x Serial ports (2x RS232 and 2x RS232/422/485 with auto-flow control: isolation protection on COM1 and COM2)

Storage

- 1 x 2.5" SATA HDD drive bay (NISE 2100/2100A)
 1 x 2.5" SATA HDD drive bay or optional SATA DOM module horizontal type (NISE 2110/2110A)
- 1 x external CF socket

Power Requirements

- ATX Power mode
- DC to DC power design onboard, supports 9~36V DC
- Optional 19V, 65W power adapter

Dimensions

- NISE 2100/2100A
 195mm (W) x 200mm (D) x 65mm (H) (7.7" x 7.9" x 2.6")
- NISE 2110/2110A
 195mm (W) x 200mm (D) x 90mm (H) (7.7" x 7.9" x 3.5")

Construction

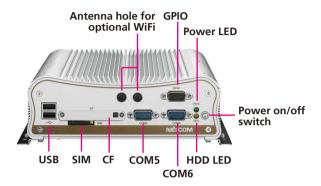
• Aluminum chassis with fanless design

Environment

- Operating temperature ambient with airflow:
 - -5°C to 55°C (NISE 2100/2110)
 - -20°C to 70°C with industrial grade devices (NISE 2100A/2110A)

(According to IEC60068-2-1, IEC60068-2-2, IEC60068-2-14)

- Storage temperature: -20°C to 80°C
- Relative humidity: 10% to 93% (Non-Condensing)


Certifications

- CE approval
- FCC Class A

Getting to Know NISE 2100/2110 Series

NISE 2100/2100A - Front Panel

USB

Used to connect USB 2.0/1.1 devices.

CF

Used to insert a CompactFlash card.

SIM

Used to insert a SIM card.

Antenna Hole for Optional WiFi

Used to connect an optional Mini-PCle WiFi module.

COM5 and COM6

Used to connect RS232 compatible serial devices.

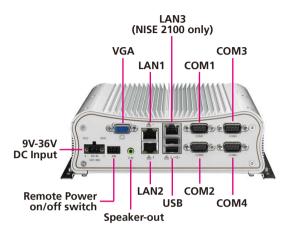
GPIO

The GPIO connector supports 4 digital input and 4 digital output.

Power LED

Indicates the power status of the system.

HDD LED


Indicates the status of the hard drive.

Power On/Off Switch

Press to power-on or power-off the system.

NISE 2100/2100A - Rear Panel

9V-36V DC Input

Used to plug a DC power cord.

Output for Remote Power On/Off Switch

Used to connect a remote to power on/off the system.

VGA

Used to connect an analog VGA monitor.

Speaker-out

Used to connect a headphone or a speaker.

LAN

Used to connect the system to a local area network.

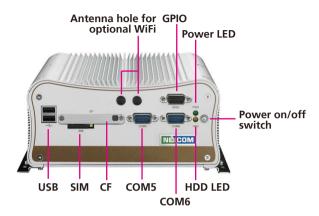
NISE 2100: LAN1 to LAN3

NISE 2100A: LAN1 and LAN2 only.

USB

Used to connect USB 2.0/1.1 devices.

COM1 and COM2


Used to connect RS232/422/485 compatible serial devices.

COM3 and COM4

Used to connect RS232 compatible serial devices.

NISE 2110/2110A - Front Panel

USB

Used to connect USB 2.0/1.1 devices.

CF

Used to insert a CompactFlash card.

SIM

Used to insert a SIM card.

Antenna Hole for Optional WiFi

Used to connect an optional Mini-PCle WiFi module.

COM5 and COM6

Used to connect RS232 compatible serial devices.

GPIO

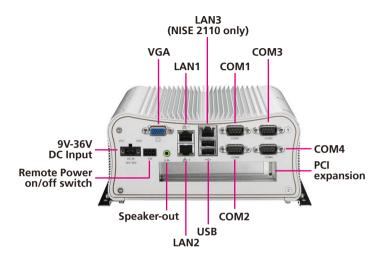
The GPIO connector supports 4 digital input and 4 digital output.

Power LED

Indicates the power status of the system.

HDD LED

Indicates the status of the hard drive.


Power On/Off Switch

Press to power-on or power-off the system.

NISE 2100, NISE 2100A, NISE 2110, NISE 2110A User Manual

NISE 2110/2110A - Rear Panel

9V-36V DC Input

Used to plug a DC power cord.

Output for Remote Power On/Off Switch

Used to connect a remote to power on/off the system.

VGA

Used to connect an analog VGA monitor.

Speaker-out

Used to connect a headphone or a speaker.

USB

Used to connect USB 2.0/1.1 devices.

LAN

Used to connect the system to a local area network.

NISE 2110: LAN1 to LAN3

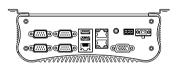
NISE 2110A: LAN1 and LAN2 only.

COM1 and COM2

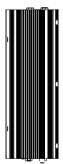
Used to connect RS232/422/485 compatible serial devices.

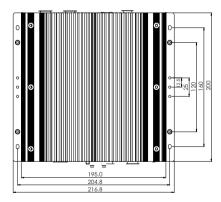
COM3 and COM4

Used to connect RS232 compatible serial devices.

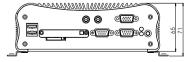

PCI Expansion

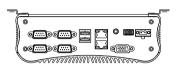
Used to connect a PCI expansion card.

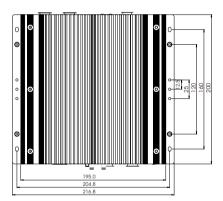


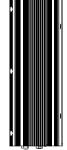

Mechanical Dimensions

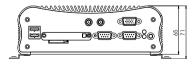
NISE 2100

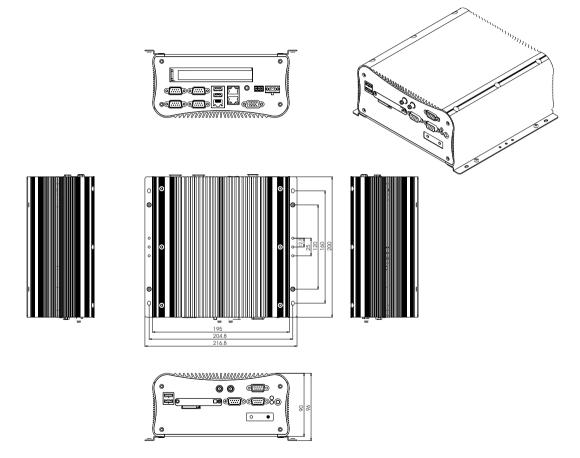


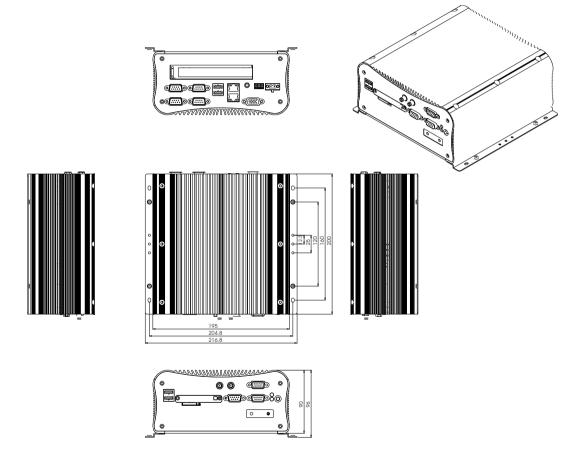





NISE 2100A







NISE 2110

NISE 2110A

12

Chapter 2: Jumpers and Connectors

This chapter describes the jumpers and connectors on the motherboard. Note that the following procedures are generic for all NISE 2100/2110 series.

Before You Begin

- Ensure you have a stable, clean working environment. Dust and dirt can get into components and cause a malfunction. Use containers to keep small components separated.
- Adequate lighting and proper tools can prevent you from accidentally damaging the internal components. Most of the procedures that follow require only a few simple tools, including the following:
 - A Philips screwdriver
 - A flat-tipped screwdriver
 - A set of jewelers Screwdrivers
 - A grounding strap
 - An anti-static pad
- Using your fingers can disconnect most of the connections. It is recommended that you do not use needle-nosed pliers to disconnect connections as these can damage the soft metal or plastic parts of the connectors
- Before working on internal components, make sure that the power is off. Ground yourself before touching any internal components, by touching a metal object. Static electricity can damage many of the elec-

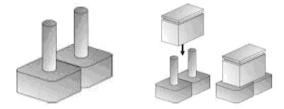
tronic components. Humid environment tend to have less static electricity than dry environments. A grounding strap is warranted whenever danger of static electricity exists.

Precautions

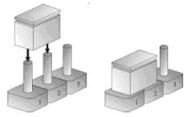
Computer components and electronic circuit boards can be damaged by discharges of static electricity. Working on the computers that are still connected to a power supply can be extremely dangerous.

Follow the guidelines below to avoid damage to your computer or your-self:

- Always disconnect the unit from the power outlet whenever you are working inside the case.
- If possible, wear a grounded wrist strap when you are working inside the computer case. Alternatively, discharge any static electricity by touching the bare metal chassis of the unit case, or the bare metal body of any other grounded appliance.
- Hold electronic circuit boards by the edges only. Do not touch the components on the board unless it is necessary to do so. Don't flex or stress the circuit board.
- Leave all components inside the static-proof packaging that they shipped with until they are ready for installation.
- Use correct screws and do not over tighten screws.



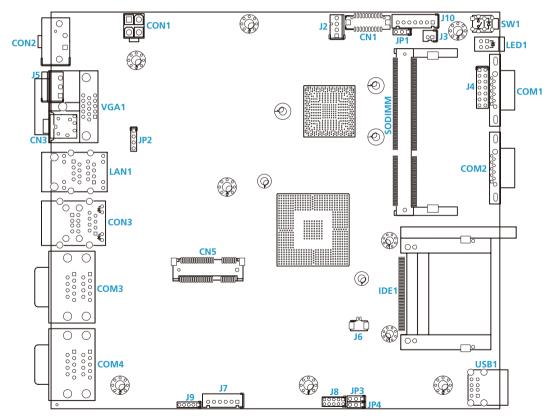
Jumper Settings


A jumper is the simplest kind of electric switch. It consists of two metal pins and a cap. When setting the jumpers, ensure that the jumper caps are placed on the correct pins. When the jumper cap is placed on both pins, the jumper is **short**. If you remove the jumper cap, or place the jumper cap on just one pin, the jumper is **open**.

Refer to the illustrations below for examples of what the 2-pin and 3-pin jumpers look like when they are short (on) and open (off).

Two-Pin Jumpers: Open (Left) and Short (Right)

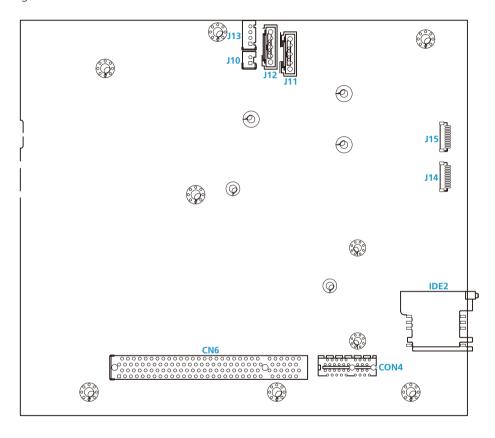
Three-Pin Jumpers: Pins 1 and 2 Are Short



Locations of the Jumpers and Connectors

NISB 2100

The figure below is the top view of the NISB 2100 main board which is the main board used in the NISE 2100 Series system. It shows the locations of the jumpers and connectors.



The figure below is the bottom view of the NISB 2100 main board.

Jumpers

Clear CMOS

Connector size: 1x3 3-pin header, 2.54 mm pitch

Connector location: JP3

Pin	Settings	
1-2 On	Normal	
2-3 On	CMOS Clear	

1-2 On: default

Pin	Definition
1	NC
2	IRTCRST#
3	GND

COM3 RS232 RI Pin Power Select

Connector type: 1x5 5-pin header 2.54mm -M-180

Connector location: J9

Pin	Settings	
1-2	+5V	
2-3	+12V	
4-5	RING	

4-5 On: default

Pin	Definition	
1	VCC5	
2	RING_T	
3	+12V	
4	RING_T	
5	RING	

17

Panel CCFL LVDS Backlight Power Select

Connector size: 1x3 3-pin header, 2.54 mm pitch

Connector location: JP1

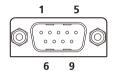
Pin	Settings
1	VCC3 (3.3V)
2	VCC_LCD
3	VCC5(+5V)

1-2 On: default

Connector Pin Definitions

External I/O Interface - Front Panel

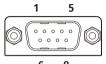
USB Ports


Connector type: Dual USB port Connector location: USB1

Pin	Definition	Pin	Definition
1	USB_VCC(5V)	5	USB_VCC(5V)
2	DATA_N	6	DATA_N
3	DATA_P	7	DATA_P
4	GND	8	GND

COM5 Serial Port

Connector type: DB-9 port Connector location: COM2



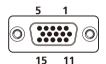
Pin	Definition	Pin	Definition
1	COM5_DCD	6	COM5_DSR
2	COM5_RXD	7	COM5_RTS
3	COM5_TXD	8	COM5_CTS
4	COM5_DTR	9	COM5_RI
5	GND		

COM6 Serial Port

Connector type: DB-9 port Connector location: COM1

0

Pin	Definition	Pin	Definition
1	COM6_DCD	6	COM6_DSR
2	COM6_RXD	7	COM6_RTS
3	COM6_TXD	8	COM6_CTS
4	COM6_DTR	9	COM6_RI
5	GND		


GPIO Connector

(4 digital input and 4 digital output)

Connector type: DB-15 port, 2x5 10-pin header, 2.0 mm-M-180

Connector location: J8

Pin	Definition	Pin	Definition
1	+5V	2	GND
3	GPO	4	GPI
5	GPO	6	GPI
7	GPO	8	GPI
9	GPO	10	GPI

Status Indicators

PWR

HDD

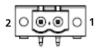
Status	LED Color
PWR	Green
HDD	Yellow

ATX Power On/Off Switch

Connector location: SW1

Pin	Definition
On	Blue light
Off	Red light

Pin	Definition	Pin	Definition
1	GND	2	PBT_PU
3	PBT_PU	4	GND
A1	PWRLED_N	C1	PWRLED_P



External I/O Interface - Rear Panel

9-36V DC Input

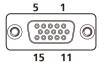
Connector type: 2P Phoenix Contact 5.08mm Power Connector

Connector location: CON2

Pin	Definition
1	GND
2	\/IN(9~36\/)

Remote Power On/Off Switch

Connector type: 3-pin switch Connector location: J5


Pin	Definition
1	GND
2	PWR_ON
3	PS_ON

VGA Port

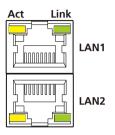
Connector type: DB-15 port, 15-pin D-Sub

Connector location: VGA1

Pin	Definition	Pin	Definition
1	RED_VGA	9	VGA_VCC(5V)
2	GREEN_VGA	10	GND
3	BLUE_VGA	11	NC
4	NC	12	DDCDATA_VGA
5	GND	13	HSYNC_VGA
6	VGADET	14	VSYNC_VGA
7	GND	15	DDCCLK_VGA
8	GND		

Speaker-out Jack

Connector type: 6-pin jack Connector location: CN3


Pin	Definition	
1	Speak Out - R	
2	Speak Out - JD	
3	NC	
4	Speak Out - L	
5	GND	
6	GND	

LAN1 and LAN2 Ports

Connector type: RJ45 port with LEDs

Connector location: LAN1

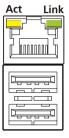
Act	Status
Yellow	Data Activity
Blinking	
Off	No Acitivity

Link	Status
Green	Linked
Always Lighted	
Off	No Link

LAN1

Pin	Definition	Pin	Definition
B1	LAN1M0P	В7	LAN1M3P
B2	LAN1M0N	B8	LAN1M3N
В3	LAN1M1P	B9	LAN1LINK
B4	LAN1M2P	B10	LAN1ACTP
B5	LAN1M2N	B11	LAN1ACT#
В6	LAN1M1N	B12	LAN1LINKP

LAN2


Pin	Definition	Pin	Definition
A1	LAN2M0P	A7	LAN2M3P
A2	LAN2M0N	A8	LAN2M3N
A3	LAN2M1P	A9	LAN2LINK
A4	LAN2M2P	A10	LAN2ACTP
A5	LAN2M2N	A11	LAN2ACT#
A6	LAN2M1N	A12	LAN2LINKP

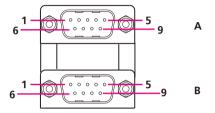
LAN3 (NISE 2100/2110 only) and Dual USB Ports

Connector size: RJ45 and Dual USB

Connector location: CON3

USB

Pin	Definition	Pin	Definition
1	USB_VCC(5V)	5	USB_VCC(5V)
2	DATA_N	6	DATA_N
3	DATA_P	7	DATA_P
4	GND	8	GND
23	GND	22	GND
27	GND	28	GND


LAN3

Pin	Definition	Pin	Definition
9	LAN3M0P	17	LAN3ACTP
10	LAN3M0N	18	LAN3_LEDACT#
11	LAN3M1P	19	LAN3LINKP
12	LAN3M2P	20	LAN3_LEDLINK
13	LAN3M2N	21	GND
14	LAN3M1N	24	GND
15	LAN3M3P	25	GND
16	LAN3M3N	28	GND

COM1 and COM2 Ports

Connector size: DB-9 port Connector location: COM3

COM1A

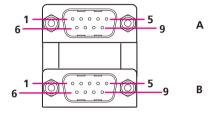
Pin	Definition	Pin	Definition
1	COM1_DCD	6	COM1_DSR
2	COM1_RXD	7	COM1_RTS
3	COM1_TXD	8	COM1_CTS
4	COM1_DTR	9	COM1_RI
5	GND		

COM2B

Pin	Definition	Pin	Definition
1	COM2_DCD	6	COM2_DSR
2	COM2_RXD	7	COM2_RTS
3	COM2_TXD	8	COM2_CTS
4	COM2_DTR	9	COM2_RI
5	GND		

RS485

Pin	Definition	Pin	Definition
1	TXD-	6	Reserved
2	TXD+	7	Reserved
3	Reserved	8	Reserved
4	Reserved	9	Reserved
5	Reserved		


RS422

Pin	Definition	Pin	Definition
1	TXD-	6	RTS-
2	TXD+	7	RTS+
3	RXD+	8	CTS+
4	RXD-	9	CTS-
5	GND		

COM3 and COM4 Ports

Connector size: DB-9 port Connector location: COM4

сомза

Pin	Definition	Pin	Definition
1	COM3_DCD	6	COM3_DSR
2	COM3_RXD	7	COM3_RTS
3	COM3_TXD	8	COM3_CTS
4	COM3_DTR	9	COM3_RI
5	GND		

COM4B

Pin	Definition	Pin	Definition
1	COM4_DCD	6	COM4_DSR
2	COM4_RXD	7	COM4_RTS
3	COM4_TXD	8	COM4_CTS
4	COM4_DTR	9	COM4_RI
5	GND		

USB 8-9 Connector

Connector size: 1x6 6-pin JST wafer, 2.5 mm pitch

Pin	Definition
1	USB_VCC45
2	USB_8N
3	USB_8P
4	USB_9N
5	USB_9P
6	USB_GND

Internal Connectors

COM5 Connector

Connector type: 2x5 10-pin boxed header, 1.0mm

Connector location: J14

Pin	Definition	Pin	Definition
1	SIO_DCD#5	2	SIO_RXD5
3	SIO_TXD5	4	SIO_DTR#5
5	IO_GND	6	SIO_DSR#5
7	SIO_RTS#5	8	SIO_CTS#5
9	SIO_RI#5	10	IO_GND

COM6 Connector

Connector type: 2x5 10-pin boxed header, 1.0mm

Pin	Definition	Pin	Definition
1	SIO_DCD#6	2	SIO_RXD6
3	SIO_TXD6	4	SIO_DTR#6
5	IO_GND	6	SIO_DSR#6
7	SIO_RTS#6	8	SIO_CTS#6
9	SIO_RI#6	10	IO_GND

Remote Power On/Off Switch

Connector type: 1x2 2-pin header, JST 2.0mm

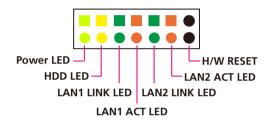
Connector location: J3

Pin	Definition	
1	PSON#	
2	GND	

CPU Fan Connector

Connector type: 1x4, 4-pin Wafer, 2.54mm-M-180

Pin	Definition	
1	GND	
2	VCC_12	
3	CPU1_FAN_SPEED	
4	CPU1 FANPWM	



Internal Power/HDD/LAN Power/LAN Active LED (RTC Connector)

Connector type: 2x7 14-pin header 2.54mm-M-180

Connector location: J4

Pin	Description	Pin	Description
1	POWER_OK	2	VCC_LEDPOWER
3	HDD_LED#	4	HDD_LEDPOWER
5	LAN1_LINK#	6	LAN1LINK_LEDPOWER
7	LAN1_ACT#	8	LAN1ACT_LEDPOWER
9	LAN2_LINK#	10	LAN2LINK_LEDPOWER
11	LAN2_ACT#	12	LAN2ACT_LEDPOWER
13	H/W RESET	14	GND

SMBus Pin Header

Connector type: 1x3 3-pin header 2.54mm-M-180

Pin	Definition	
1	SMbus_CLK	
2	SMbus_data	
3	GND	

Mic-in Connector

Connector type: 1x4 4-pin header 2.54mm-M-180

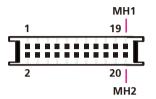
Connector location: JP2

Pin	Definition
1	Mic-in L
2	Mic JD
3	GND
4	Mic-in R

Power Output Connector

Connector type: 2x2 4-pin AUX 3.5mm

2 4


Pin	Definition	
1	GND	
2	GND	
3	VIN Power	
4	VIN Power	

LVDS Connector

Connector type: 20-pin DF13-20DP 1.25mm

Connector location: CN1

Pin	Definition	Pin	Definition
1	LVDS_DDCCLK	2	LVDS_DDCDATA
3	VCC_LCD(5V Or3.3V)	4	LVDS_A0P
5	NC	6	LVDS_A0N
7	NC	8	VCC_LCD(5V Or3.3V)
9	GND	10	LVDS_A1P
11	LVDS_ACLKP	12	LVDS_A1N
13	LVDS_ACLKN	14	GND
15	GND	16	V_INV (12V)
17	LVDS_A2P	18	V_INV (12V)
19	LVDS_A2N	20	GND

Panel CCFL Connector

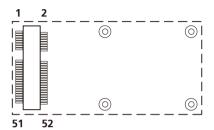
Connector type: 1x7 7-pin header JST-2.5mm-M-180



Pin	Definition
1	Vcc5
2	V_INV (12V)
3	V_INV (12V)
4	CCFLBKLTCTRL
5	GND
6	GND
7	M_BKLTEN

CompactFlash

Connector type: CompactFlash Type I/II H:6.3mm SMD



Pin	Description	Pin	Description
1	GND	2	SDD3A
3	SDD4A	4	SDD5A
5	SDD6A	6	SDD7A
7	SDCS#1	8	GND
9	GND	10	GND
11	GND	12	GND
13	VCC	14	GND
15	GND	16	GND
17	GND	18	SDA2A
19	SDA1A	20	SDA0A
21	SDD0A	22	SDD1A
23	SDD2A	24	NC
25	CF_CD2#	26	CF_CD1#
27	SDD11A	28	SDD12A

Pin	Description	Pin	Description
29	SDD13A	30	SDD14A
31	SDD15A	32	SDCS#3
33	NC	34	SDIOR#
35	SDIOW#	36	VCC
37	HDIRQ14	38	VCC
39	CF_SEL#	40	NC
41	IDERST#	42	SIORDY
43	SDREQ	44	SDDACK#
45	IDEACTP#	46	DIAG#
47	SDD8A	48	SDD9A
49	SDD10A	50	GND

Mini-PCle Slot

Pin	Definition	Pin	Definition
1	PCIE_WAKE#	2	+V3.3A_MINI
3	NC	4	GND
5	NC	6	+V1.5S_MINI
7	PCIE_MINI_CLKREQ#1	8	SIM_PWER
9	GND	10	SIM_DATA
11	CLK_N	12	SIM_CLK
13	CLK_P	14	SIM_REST
15	GND	16	SIM_VCCP
17	NC	18	GND
19	NC	20	MINICARD1_DIS#
21	GND	22	PCI_RST
23	PCIeRX_N	24	+V3.3A_MINI
25	PCIeRX_P	26	GND
27	GND	28	+V1.5S_MINI
29	GND	30	SMB_CLK

Pin	Definition	Pin	Definition
31	PCIeTX_N	32	SMB_DATA
33	PCIeTX_P	34	GND
35	GND	36	USB_DATA_N
37	GND	38	USB_DATA_P
39	+V3.3A_MINI	40	GND
41	+V3.3A_MINI	42	NC
43	GND	44	LED_WLAN_N
45	NC	46	NC
47	NC	48	+V1.5S_MINI
49	NC	50	GND
51	NC	52	+V3.3A_MINI
MH1	GND	MH2	GND
MH3	GND	MH4	GND
MH6	GND		

PCI Slot (Low Profile)

Connector type: 120-pin H:9.6mm 180D GOLD FLASH DIP 5V

Definition					
Pin	Α	В	Pin	Α	В
1	TRST#	-12V	32	AD16	AD17
2	+12V	TCK	33	+3.3V	C/BE2#
3	TMS	GND	34	FRAME#	GND
4	TDI	TDO	35	GND	IRDY#
5	+5V	+5V	36	TRDY#	+3.3V
6	INTA#	+5V	37	GND	DEVSEL#
7	INTC#	INTB#	38	STOP#	GND
8	+5V	INTD#	39	+3.3V	LOCK#
9	RSV1	PRSNT1#	40	SMBCLK	PERR#
10	+5V	RSV5	41	SMBDAT	+3.3V
11	RSV2	PRSNT2#	42	GND	SERR#
12	GND	GND	43	PAR	+3.3V
13	GND	GND	44	AD15	C/BE1#
14	+3.3Vaux	RSV6	45	+3.3V	AD14
15	RST#	GRPIMD	46	AD13	GND
16	+5V	CLK	47	AD11	AD12
17	GNT#	GND	48	GND	AD10
18	GND	REQ#	49	AD9	GND
19	PME#	+5V	CONNECTOR KEY		-v
20	AD30	AD31			_ T
21	+3.3V	AD29	52	C/BE0#	AD8
22	AD28	GND	53	+3.3V	AD7
23	AD26	AD27	54	AD6	+3.3V
24	GND	AD25	55	AD4	AD5
25	AD24	+3.3V	56	GND	AD3
26	IDSEL	C/BE3#	57	AD2	GND
27	+3.3V	AD23	58	AD0	AD1

28	AD22	GND	59	+5V	+5V
29	AD20	AD21	60	REQ64#	ACK64#
30	GND	AD19	61	+5V	+5V
31	AD18	+3.3V	62	+5V	+5V

Chapter 3: System Setup

Removing the Chassis Cover

Prior to removing the chassis cover, make sure the unit's power is off and disconnected from the power sources to prevent electric shock or system damage.

- 1. The screws on the top cover are used to secure the cover to the chassis.
- 2. Remove these screws and then put them in a safe place for later use.

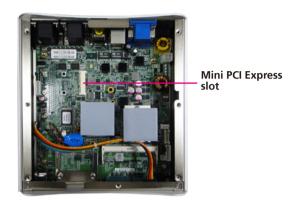
The dots denote the locations of the screws.

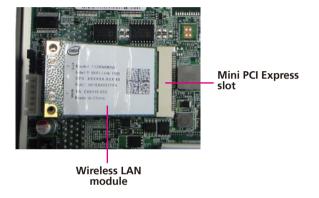
3. The SODIMM, Mini-PCle and CompactFlash sockets are readily accessible upon removing the cover.

Installing a SODIMM

1. Locate the SODIMM socket on the board.

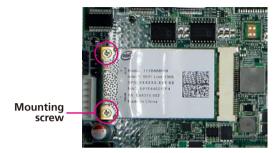
2. Insert the module into the socket at an approximately 30 degrees angle. Apply firm even pressure to each end of the module until it slips into the socket. The gold-plated connector on the edge of the module will almost completely disappear inside the socket.


3. Push the module down until the clips on both sides of the socket lock into position. You will hear a distinctive "click", indicating the module is correctly locked into position.

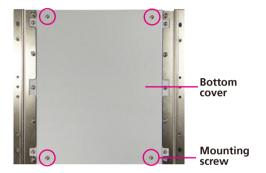


Installing a Wireless LAN Module

1. Locate the Mini PCI Express slot on the board.

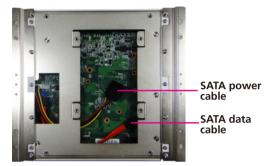


2. Insert the wireless LAN module into the Mini PCI Express slot at a 45 degrees angle until the gold-plated connector on the edge of the module completely disappears inside the slot.


3. Push the module down and then secure it with mounting screws.

Installing a SATA Hard Drive (NISE 2100/2100A)

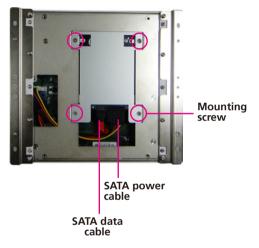
1. With the bottom side of the chassis facing up, remove the mounting screws of the bottom cover and then remove the cover.



2. Remove the 4 mounting screws that secure the drive bay to the chassis.

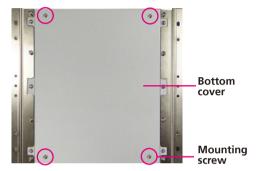
3. Noticeable are 2 cables upon removing the drive bay. These are the SATA data cable and the SATA power cable.

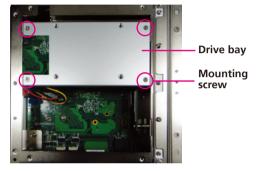
4. The drive bay is used to hold a SATA hard drive.



5. Place the SATA hard drive on the drive bay.

Align the mounting holes that are on the sides of the SATA drive with the mounting holes on the drive bay and then use the provided mounting screws to secure the drive in place.


- 6. Mount the drive bay back into the chassis and then secure it with mounting screws.
- 7. Connect the SATA data cable and SATA power cable to the connectors on the SATA drive.



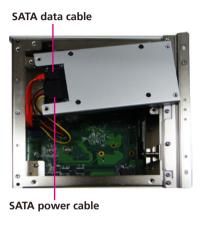
Installing a SATA Hard Drive (NISE 2110/2110A)

1. With the bottom side of the chassis facing up, remove the mounting screws of the bottom cover and then remove the cover.

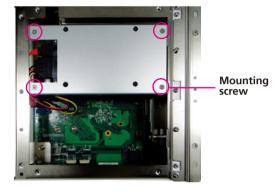
2. Remove the 4 mounting screws that secure the drive bay to the chassis and then remove the drive bay.

3. The drive bay is used to hold a SATA hard drive.

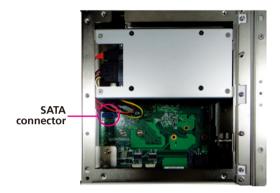
4. Place the SATA hard drive on the drive bay. Align the mounting holes that are on the SATA drive with the mounting holes on the drive bay.

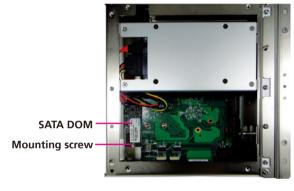


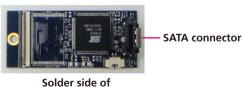
5. Turn to the other side of the bay and then use the provided mounting screws to secure the SATA drive to the drive bay.



6. Connect the SATA data cable and SATA power cable to the connectors on the SATA drive.


7. Mount the drive bay back into the chassis and then secure it with mounting screws.




Installing a SATA DOM

1. Locate the SATA connector on the board.

2. Align the SATA connector located on the solder side of the SATA DOM to the SATA connector that is on the board and then press it down firmly. Secure the SATA DOM with the provided mounting screw.

SATA DOM

Installing a CompactFlash Card

The installation instructions in this section apply to both the NISE 2100/2100A and NISE 2110/2110A systems. Illustrations used are that of the NISE 2100/2100A.

1. The CompactFlash card must be inserted from the front side of the chassis.

2. Remove the mounting screws of the CompactFlash socket's cover.


49

3. Remove the socket's cover to access the CompactFlash socket.

4. With the CompactFlash card's label facing up, insert the card into the socket.

5. Push the eject button to take out the card.

ив(сом

Chapter 4: BIOS Setup

This chapter describes how to use the BIOS setup program for the NISE 2100/2110 Series. The BIOS screens provided in this chapter are for reference only and may change if the BIOS is updated in the future.

To check for the latest updates and revisions, visit the NEXCOM Web site at www.nexcom.com.tw.

About BIOS Setup

The BIOS (Basic Input and Output System) Setup program is a menu driven utility that enables you to make changes to the system configuration and tailor your system to suit your individual work needs. It is a ROM-based configuration utility that displays the system's configuration status and provides you with a tool to set system parameters.

These parameters are stored in non-volatile battery-backed-up CMOS RAM that saves this information even when the power is turned off. When the system is turned back on, the system is configured with the values found in CMOS

With easy-to-use pull down menus, you can configure such items as:

- Hard drives, diskette drives, and peripherals
- Video display type and display options
- Password protection from unauthorized use
- Power management features

The settings made in the setup program affect how the computer performs. It is important, therefore, first to try to understand all the Setup options, and second, to make settings appropriate for the way you use the computer.

When to Configure the BIOS

This program should be executed under the following conditions:

- When changing the system configuration
- When a configuration error is detected by the system and you are prompted to make changes to the Setup program
- When resetting the system clock
- When redefining the communication ports to prevent any conflicts
- When making changes to the Power Management configuration
- When changing the password or making other changes to the security setup

Normally, CMOS setup is needed when the system hardware is not consistent with the information contained in the CMOS RAM, whenever the CMOS RAM has lost power, or the system features need to be changed.

Default Configuration

Most of the configuration settings are either predefined according to the Load Optimal Defaults settings which are stored in the BIOS or are automatically detected and configured without requiring any actions. There are a few settings that you may need to change depending on your system configuration.

Entering Setup

When the system is powered on, the BIOS will enter the Power-On Self Test (POST) routines. These routines perform various diagnostic checks; if an error is encountered, the error will be reported in one of two different ways:

- If the error occurs before the display device is initialized, a series of beeps will be transmitted.
- If the error occurs after the display device is initialized, the screen will display the error message.

Powering on the computer and immediately pressing allows you to enter Setup. Another way to enter Setup is to power on the computer and wait for the following message during the POST:

TO ENTER SETUP BEFORE BOOT
PRESS <CTRL-ALT-ESC>
Press the key to enter Setup:

Legends

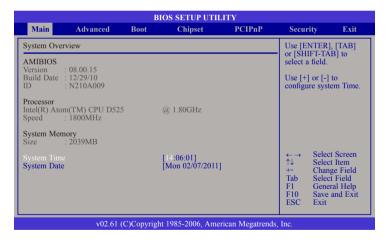
Key	Function
Right and Left arrows	Moves the highlight left or right to select a
	menu.
Up and Down arrows	Moves the highlight up or down between sub-
	menus or fields.
<esc></esc>	Exits to the BIOS Setup Utility.
+ (plus key)	Scrolls forward through the values or options of
	the highlighted field.
- (minus key)	Scrolls backward through the values or options
	of the highlighted field.
Tab	Selects a field.
<f1></f1>	Displays General Help.
<f10></f10>	Saves and exits the Setup program.
<enter></enter>	Press <enter> to enter the highlighted submenu.</enter>

Scroll Bar

When a scroll bar appears to the right of the setup screen, it indicates that there are more available fields not shown on the screen. Use the up and down arrow keys to scroll through all the available fields.

Submenu

When "▶" appears on the left of a particular field, it indicates that a submenu which contains additional options are available for that field. To display the submenu, move the highlight to that field and press <Enter>.



BIOS Setup Utility

Once you enter the AMI BIOS Setup Utility, the Main Menu will appear on the screen. The main menu allows you to select from six setup functions and one exit choices. Use arrow keys to select among the items and press <Enter> to accept or enter the submenu.

Main

The Main menu is the first screen that you will see when you enter the BIOS Setup Utility.

AMI BIOS

Displays the detected BIOS information.

Processor

Displays the detected processor information.

System Memory

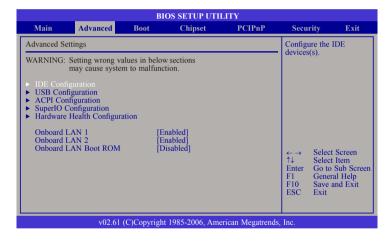
Displays the detected system memory information.

System Time

The time format is <hour>, <minute>, <second>. The time is based on the 24-hour military-time clock. For example, 1 p.m. is 13:00:00. Hour displays hours from 00 to 23. Minute displays minutes from 00 to 59. Second displays seconds from 00 to 59.

System Date

The date format is <day>, <month>, <date>, <year>. Day displays a day, from Sunday to Saturday. Month displays the month, from January to December. Date displays the date, from 1 to 31. Year displays the year, from 1999 to 2099



Advanced

The Advanced menu allows you to configure your system for basic operation. Some entries are defaults required by the system board, while others, if enabled, will improve the performance of your system or let you set some features according to your preference.

Setting incorrect field values may cause the system to malfunction.

IDE Configuration

This section is used to configure the IDE drives.

USB Configuration

This section is used to configure USB devices.

ACPI Configuration

This section is used to configure the Advanced ACPI configuration.

Super IO Configuration

This section is used to configure the I/O functions supported by the on-board Super I/O chip.

Hardware Health Configuration

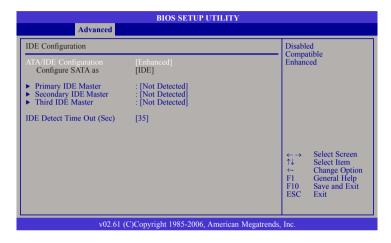
This section is used to configure the hardware monitoring events such as temperature, fan speed and voltages.

Onboard LAN 1 and Onboard LAN 2

This section is used to enable or disable the onboard LAN.

Onboard LAN Boot ROM

Enable this field if you wish to use the boot ROM (instead of a disk drive) to boot-up the system and access the local area network directly.


If you wish to change the boot ROM's settings, type the <Shift> and <F10> keys simultaneously when prompted during boot-up. Take note: you will be able to access the boot ROM's program (by typing <Shift> + <F10>) only when this field is enabled.

IDE Configuration

This section is used to configure the IDE drives.

ATA/IDE Configuration

This field is used to configure the IDE drives. The options are Disabled, Compatible and Enhanced.

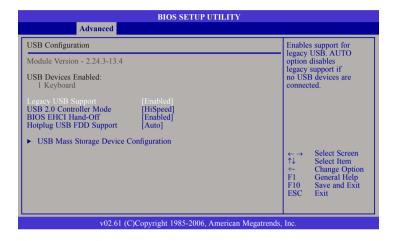
Configure SATA As

IDE This option configures the Serial ATA drives as Parallel ATA physical storage device.

AHCI This option configures the Serial ATA drives to use AHCI (Advanced Host Controller Interface). AHCI allows the storage driver to enable the advanced Serial ATA features which will increase storage performance.

Primary IDE Master to Third IDE Master

When you enter the BIOS Setup Utility, the BIOS will auto detect the existing IDE devices then displays the status of the detected devices. To configure an IDE drive, move the cursor to a field then press <Enter>.


IDE Detect Time Out (Sec)

Selects the time out value for detecting ATA/ATAPI devices.

USB Configuration

This section is used to configure USB devices.

Legacy USB Support

Due to the limited space of the BIOS ROM, the support for legacy USB keyboard (in DOS mode) is by default set to Disabled. With more BIOS ROM space available, it will be able to support more advanced features as well as provide compatibility to a wide variety of peripheral devices.

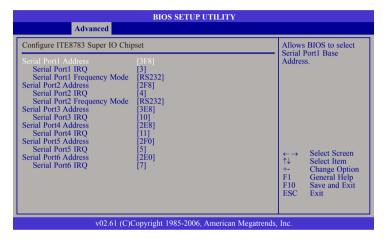
If a PS/2 keyboard is not available and you need to use a USB keyboard to install Windows (installation is performed in DOS mode) or run any program under DOS, set this field to Enabled.

USB 2.0 Controller Mode

Sets the USB 2.0 controller mode to HiSpeed (480 Mbps) or FullSpeed (12 Mbps).

BIOS EHCI Hand-Off

Enable this field when using operating systems without the EHCI hand-off support.


Hotplug USB FDD Support

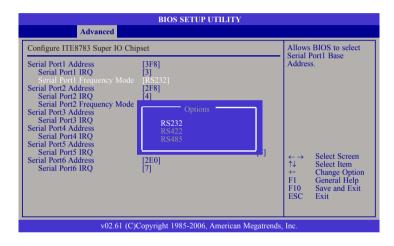
Enables support for USB FDD hot plug.

Super IO Configuration

This section is used to configure the I/O functions supported by the on-board Super I/O chip.

Serial Port1 Address to Serial Port6 Address

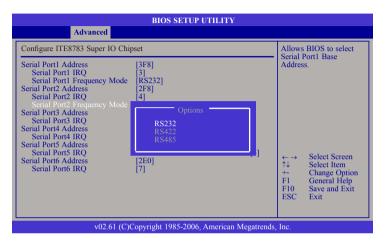
Auto The system will automatically select an I/O address for the onboard serial port.


3F8, 2F8, 3E8, 2F0, 2E0 Allows you to manually select an I/O address for the onboard serial port.

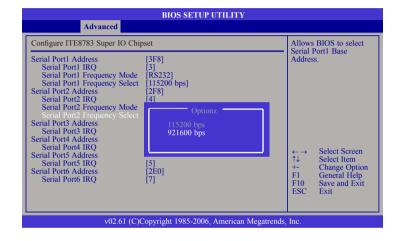
Disabled Disables the onboard serial port.

Serial Port1 IRQ to Serial Port6 IRQ

These fields are used to select an IRQ for the onboard serial port 1, 2, 3, 4, 5 or 6.

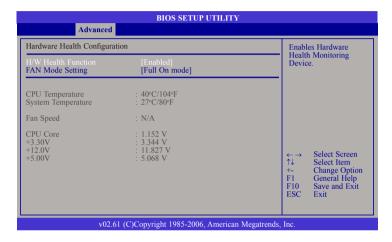

Serial Port1 Frequency Mode

This field is used to select the frequency mode of serial port 1. The options are RS232, RS422 and RS485.



Serial Port2 Frequency Mode

This field is used to select the frequency mode of serial port 2. The options are RS232, RS422 and RS485.


If you selected RS422 or RS485 in the "Serial Port1 Frequency Mode" and/or "Serial Port2 Frequency Mode" field, the "Serial Port1 Frequency Select" and/or "Serial Port2 Frequency Select" field will appear prompting you to select the frequency setting. The options are 115200 bps and 921600 bps.

Hardware Health Configuration

This section is used to configure the hardware monitoring events such as temperature, fan speed and voltages.

H/W Health Function

Enables or disables the hardware monitoring function.

CPU Temperature and System Temperature

Detects and displays the current temperature of the CPU and the internal temperature of the system.

CPU Core to +5.00V

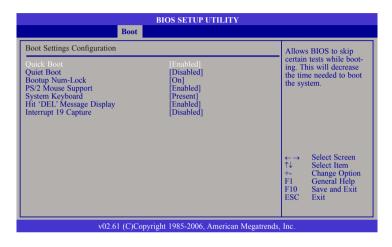
Detects and displays the output voltages.

Boot

Boot Settings Configuration

This section is used to configure settings during system boot.

Boot Device Priority


This section is used to select the boot priority sequence of the devices.

Removable Drives

This section is used to select the boot priority sequence of the removable drives.

Boot Settings Configuration

This section is used to configure settings during system boot.

Quick Boot

When Enabled, the BIOS will shorten or skip some check items during POST. This will decrease the time needed to boot the system.

Quiet Boot

Enabled Displays OEM logo instead of the POST messages.

Disabled Displays normal POST messages.

Bootup Num-Lock

This allows you to determine the default state of the numeric keypad. By default, the system boots up with NumLock on wherein the function of the numeric keypad is the number keys. When set to Off, the function of the numeric keypad is the arrow keys.

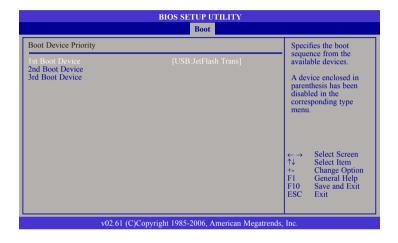
PS/2 Mouse Support

The options are Auto, Enabled and Disabled.

System Keyboard

Detects the system keyboard.

Hit 'DEL' Message Display


When enabled, the system displays the "Press DEL to run Setup" message during POST.

Interrupt 19 Capture

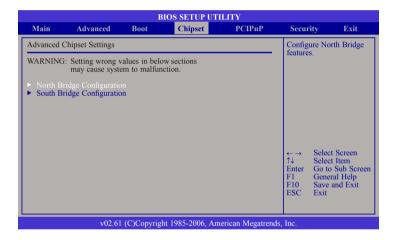
When enabled, it allows the optional ROM to trap interrupt 19.

Boot Device Priority

This section is used to select the boot priority sequence of the devices.

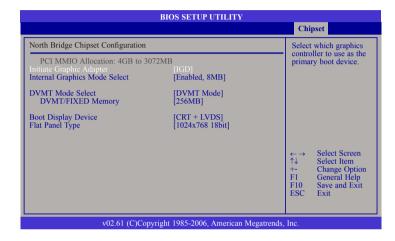
1st Boot Device to 3rd Boot Device

Selects the drive to boot first, second and third in the "1st Boot Device", "2nd Boot Device" and "3rd Boot Device" fields respectively. The BIOS will boot the operating system according to the sequence of the drive selected.



Chipset

This section is used to configure the system based on the specific features of the chipset.



Setting incorrect field values may cause the system to malfunction.

North Bridge Configuration

This section is used to configure the north bridge features.

Initiate Graphic Adapter

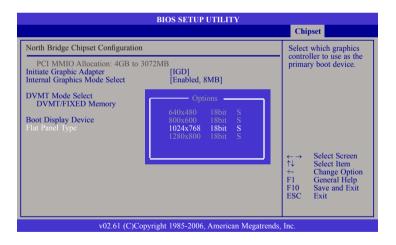
Selects the graphics controller to use as the primary boot device.

Internal Graphics Mode Select

Selects the amount of system memory used by the internal graphics device.

DVMT Mode Select

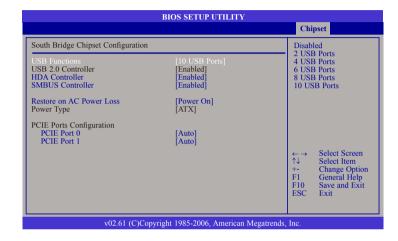
The options are Fixed mode and DVMT mode.


DVMT/Fixed Memory

This field is used to select the graphics memory size used by DVMT/Fixed mode.

Boot Display Device

This field is used to select the type of display to use when the system boots


Flat Panel Type

Selects the type of flat panel connected to the system. The supported LVDS are 640x480 18bit, 800x600 18bit, 1024x768 18bit and 1280x800 18bit

South Bridge Configuration

This section is used to configure the south bridge features.

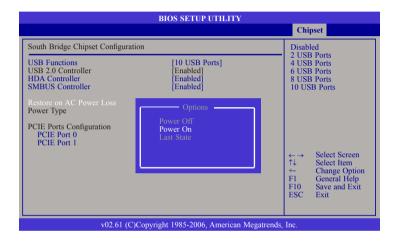
USB Functions

Enables or disables USB devices

USB 2.0 Controller

This field is used to enable or disable the Enhanced Host Controller Interface (USB 2.0).

HDA Controller


Enables or disables the onboard audio.

SMBUS Controller

Enables or disables the SMBUS.

Restore On AC Power Loss

Power Off When power returns after an AC power failure, the system's

power is off. You must press the Power button to power-on the system.

Power On When power returns after an AC power failure, the system will automatically power-on.

When power returns after an AC power failure, the system

will return to the state where you left off before power failure occurs. If the system's power is off when AC power failure occurs, it will remain off when power returns. If the system's power is on when AC power failure occurs, the system will power-on when power returns.

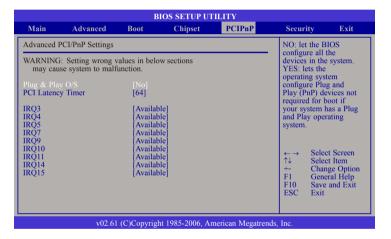
Power Type

Selects the type of power used.

PCIE Port 0 and PCIE port 1

Configures the PCIE ports.

Last State



PCIPnP

This section is used to configure settings for PCI/PnP devices.

Setting incorrect field values may cause the system to malfunction.

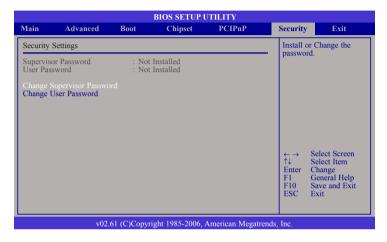
Plug & Play O/S

Yes Configures Plug and Play (PnP) devices that are not required to boot in a Plug and Play supported operating system.

No The BIOS configures all the devices in the system.

PCI Latency Timer

This feature is used to select the length of time each PCI device will control the bus before another takes over. The larger the value, the longer the PCI device can retain control of the bus. Since each access to the bus comes with an initial delay before any transaction can be made, low values for the PCI Latency Timer will reduce the effectiveness of the PCI bandwidth while higher values will improve it.


IRQ3 to IRQ15

Available The specified IRQ is available for PCI/PnP devices.

Reserved The specified IRQ is reserved for Legacy ISA devices.

Security

Change Supervisor Password

This field is used to set or change the supervisor password.

To set a new password:

- 1. Select the Change Supervisor Password field then press <Enter>.
- 2. Type your password in the dialog box then press <Enter>. You are limited to eight letters/numbers.
- 3. Press <Enter> to confirm the new password.
- 4. When the Password Installed dialog box appears, select OK.

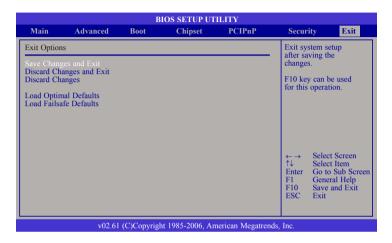
To change the password, repeat the same steps above.

To clear the password, select Change Supervisor Password then press <Enter>. The Password Uninstalled dialog box will appear.

If you forgot the password, you can clear the password by erasing the CMOS RTC (Real Time Clock) RAM using the RTC Clear jumper. Refer to chapter 2 for more information.

Change User Password

This field is used to set or change the user password.


To set a new password:

- 1. Select the Change User Password field then press <Enter>.
- 2. Type your password in the dialog box then press <Enter>. You are limited to eight letters/numbers.
- 3. Press <Enter> to confirm the new password.
- 4. When the Password Installed dialog box appears, select OK.

To change the password, repeat the same steps above.

Exit

Save Changes and Exit

To save the changes and exit the Setup utility, select this field then press <Enter>. A dialog box will appear. Confirm by selecting Yes. You can also press <F10> to save and exit Setup.

Discard Changes and Exit

To exit the Setup utility without saving the changes, select this field then press <Enter>. You may be prompted to confirm again before exiting. You can also press <ESC> to exit without saving the changes.

Discard Changes

To discard the changes, select this field then press <Enter>. A dialog box will appear. Confirm by selecting Yes to discard all changes made and restore the previously saved settings.

Load Optimal Defaults

Loads the optimal default values from the BIOS ROM.

Load Failsafe Defaults

Loads the fail-safe default values from the BIOS ROM.

Appendix A: Power Consumption

Test Configuration

System Configuration	Sys#1				
Chassis	CHASSIS NISE 2110 Ver. A				
CPU	Intel® Atom™ processor D525 (1M Cache, 1.80 GHz)				
Memory	Apacer 1GB SOD PC3-10600 (industrial)				
HDD	N/A				
FDD	WA				
CD-ROM	N/A				
CompactFlash device	Apacer 8G (industrial)				
Power Supply	POWER ADAPTER SPI:G.P FSP65-AAB(N091)				
Add-on Card	WA				
CPU Cooler	NISE 2100 HEATSINK				
System Fan	WA				
Keyboard	LEMEL B-5201-P				
Mouse	GENIVS EASY MOUSE PS/2				

Power Consumption Measurement

Purpose

The purpose of the power consumption test is to verify the power dissipation of the system and the load of the power supply.

Test Equipment

PROVA CM-07 AC/DC CLAMP METER

Device Under Test

DUT: Sys #1

Test Procedure

- 1. Power up the DUT and then boot Windows XP.
- 2. Enter the standby mode (HDD power down).
- 3. Measure the power consumption and record it.
- 4. Run the Burn-in test program to apply 100% full loading.
- 5. Run the Intel Kpower program.
- 5. Run the LAN Packet Counter and Receive program.

Test Data

Sys #1		
+12V		
2.18A		
26.16W		
0.9A		
10.8W		

Appendix B: GPI/O Programming guide

GPI/O (General Purpose Input/Output) pins are provided for custom system design. This appendix provides definitions and its default setting for the ten GPI/O pins in the NISE 2100/2110 Series. The pin definition is shown in the following table:

Pin	GPI/O	Power On	Address	Pin	GPI/O	Power On	Address
	Mode	Default			Mode	Default	
1	VCC	-	-	2	GND	-	-
3	GPO	Low	284h (Bit4)	4	GPI	High	284h (Bit0)
5	GPO	Low	284h (Bit5)	6	GPI	High	284h (Bit1)
7	GPO	Low	284h (Bit6)	8	GPI	High	284h (Bit2)
9	GPO	Low	284h (Bit7)	10	GPI	High	284h (Bit3)

J8 - GPI/O connector

NECOM

Copyright © 2011 NEXCOM International Co., Ltd. All Rights Reserved.

Control the GPO pin (3/5/7/9) level from I/O port 284h bit (4/5/6/7). The bit Set/Clear indicated output High/Low.

GPIO Programming Sample Code

#define GPIO_PORT 0x284

#define GPO3 (0x01 << 4)

#define GPO5 (0x01 << 5)

#define GPO7 (0x01 << 6)

#define GPO9 (0x01 << 7)

#define GPO3_HI outportb(GPIO_PORT, 0x10)

#define GPO3_LO outportb(GPIO_PORT, 0x00)

#define GPO5 HI outportb(GPIO PORT, 0x20)

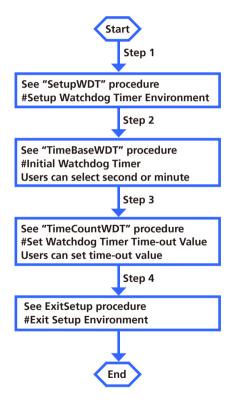
#define GPO5_LO outportb(GPIO_PORT, 0x00)

#define GPO7 HI outportb(GPIO PORT, 0x40)

#define GPO7_LO outportb(GPIO_PORT, 0x00)

#define GPO9 HI outportb(GPIO PORT, 0x80)

#define GPO9 LO outportb(GPIO PORT, 0x00)


void main(void)


```
{
GPO3_HI;
GPO5_LO;
GPO7_HI;
GPO9_LO;
```


Appendix C: Watchdog Timer Setting

ITE8783 WatchDog Programming Guide

```
#define SUPERIO PORT
                       0x2E
#define WDT SET
                        0x72
#define WDT VALUE
                        0x73
void main(void)
 #Enter SuperIO Configuration
       outportb(SUPERIO_PORT, 0x87);
       outportb(SUPERIO PORT, 0x01);
       outportb(SUPERIO PORT, 0x55);
       outportb(SUPERIO PORT, 0x55);
 # Set LDN
       outportb(SUPERIO_PORT,0x07);
       outportb(SUPERIO_PORT+1,0x07);
 # Set WDT setting
       outportb(SUPERIO PORT, WDT SET);
       outportb(SUPERIO_PORT+1, 0xC0);
       # Use the Second to come down
       # If choose the Minute, change value to 0x40
 # Set WDT sec/min
       outportb(SUPERIO PORT, WDT VALUE);
       outportb(SUPERIO_PORT+1, 0x05);
                                                #Set 5 seconds
```