

NEXCOM International Co., Ltd.

IoT Automation Solutions Business Group EtherCAT Motion Controller NET 300-ECM

User Manual

Drofaco

CONTENTS

riciacc	
Copyright	
Disclaimer	
Acknowledgements	i\
Regulatory Compliance Statements	i\
Declaration of Conformity	i\
RoHS Compliance	\
Warranty and RMA	V
Safety Information	vii
Installation Recommendations	vii
Safety Precautions	i>
Technical Support and Assistance	
Conventions Used in this Manual	
Global Service Contact Information	X
Package Contents	xii
Ordering Information	xi\
Chapter 1: Product Introduction	
Overview	
Key Features	
Product Appearance	2
Front View	2
Top View	3
Hardware Specifications	
Mechanical Dimensions	

Chapter 2: Software OperationNexECM Introduction8RTX Activation9Activate RTX with Internet Connection9Activate RTX without Internet Connection10Microsoft Visual Studio Installation11EtherCAT Utilities16EtherCAT Configuration Tool16NexECMRtxStartup27Acronis System Image Recovery28Activate Acronis Startup Recovery Manager28

Chapter 3: Jumpers and Connectors

Before You Begin	34
Precautions	
Jumper Settings	35
Locations of the Jumpers and Connectors for NIFB 300	
Top View	36
Bottom View	37
Jumpers	38
AT/ATX Mode Select	38
CMOS Clear Select	38

COM3 RI Select 39

PCH Config Pin Header	39
PCIe Configuration Settings	40
onnector Pin Definitions	41
External I/O Interfaces - Front Panel	41
24V DC Power Input	41
COM1 and COM2 Port	41
LAN3 and USB 2.0 Ports	42
LAN2 and USB 3.0 Ports	43
LAN1 and USB 3.0 Ports	44
DVI-D Connector	45
HDMI	45
Audio Connectors	46
LED Indicators	46
Internal Connectors	47
System Fan Connector	47
LED Pin Header	47
Debug Port	48
SMBus	
Remote Power On/Off & S3 Connector	49
COM3 and COM4 Connector	49
USB 2.0 Connector	
Line-in Pin Header	50
SATA Power Connectors	51
SATA Connectors	
SIM Card Slot	52
GPIO Pin Header	52
Reset Connector	53
Power Connector	53
Power Button	54
EDP	54
CFast	
PS2 KB/MS Pin Header	55

Mini-PCle Connector (WLAN/GSM)	56
Mini-PCle/mSATA Connector	57
PCIe x16 Slot	58
Chapter 4: Hardware Installation	
Installing a CPU	60
Installing a SO-DIMM Memory Module	65
Installing a SIM Card	68
Installing a CFast Card	70
Installing a 3G/GSM Module	72
Installing an mSATA Module	75
Installing an External SATA Hard Drive	77
Installing an Internal SATA Hard Drive	79
Wallmount Mounting	81
Appendix A: BIOS Setup	
About BIOS Setup	82
When to Configure the BIOS	82
Default Configuration	83
Entering Setup	83
Legends	83
BIOS Setup Utility	85
Main	85
Advanced	86
Chipset	93
Security	97
Boot	97
Save & Exit	98
Appendix B: GPI/O Programming Gui	de100
Appendix C: Watchdog Programming	Guida 102

PREFACE

Copyright

This publication, including all photographs, illustrations and software, is protected under international copyright laws, with all rights reserved. No part of this manual may be reproduced, copied, translated or transmitted in any form or by any means without the prior written consent from NEXCOM International Co., Ltd.

Disclaimer

The information in this document is subject to change without prior notice and does not represent commitment from NEXCOM International Co., Ltd. However, users may update their knowledge of any product in use by constantly checking its manual posted on our website: http://www.nexcom.com. NEXCOM shall not be liable for direct, indirect, special, incidental, or consequential damages arising out of the use of any product, nor for any infringements upon the rights of third parties, which may result from such use. Any implied warranties of merchantability or fitness for any particular purpose is also disclaimed.

Acknowledgements

NET 300 is a trademark of NEXCOM International Co., Ltd. All other product names mentioned herein are registered trademarks of their respective owners.

Regulatory Compliance Statements

This section provides the FCC compliance statement for Class A devices and describes how to keep the system CE compliant.

Declaration of Conformity

FCC

This equipment has been tested and verified to comply with the limits for a Class A digital device, pursuant to Part 15 of FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. Operation of this equipment in a residential area (domestic environment) is likely to cause harmful interference, in which case the user will be required to correct the interference (take adequate measures) at their own expense.

CE

The product(s) described in this manual complies with all applicable European Union (CE) directives if it has a CE marking. For computer systems to remain CE compliant, only CE-compliant parts may be used. Maintaining CE compliance also requires proper cable and cabling techniques.

RoHS Compliance

NEXCOM RoHS Environmental Policy and Status Update

NEXCOM is a global citizen for building the digital infrastructure. We are committed to providing green products and services, which are compliant with

European Union RoHS (Restriction on Use of Hazardous Substance in Electronic Equipment) directive 2011/65/EU, to be your trusted green partner and to protect our environment.

RoHS restricts the use of Lead (Pb) < 0.1% or 1,000ppm, Mercury (Hg) < 0.1% or 1,000ppm, Cadmium (Cd) < 0.01% or 100ppm, Hexavalent Chromium (Cr6+) < 0.1% or 1,000ppm, Polybrominated biphenyls (PBB) < 0.1% or 1,000ppm, and Polybrominated diphenyl Ethers (PBDE) < 0.1% or 1,000ppm.

In order to meet the RoHS compliant directives, NEXCOM has established an engineering and manufacturing task force to implement the introduction of green products. The task force will ensure that we follow the standard NEXCOM development procedure and that all the new RoHS components and new manufacturing processes maintain the highest industry quality levels for which NEXCOM are renowned.

The model selection criteria will be based on market demand. Vendors and suppliers will ensure that all designed components will be RoHS compliant.

How to recognize NEXCOM RoHS Products?

For existing products where there are non-RoHS and RoHS versions, the suffix "(LF)" will be added to the compliant product name.

All new product models launched after January 2013 will be RoHS compliant. They will use the usual NEXCOM naming convention.

Warranty and RMA

NEXCOM Warranty Period

NEXCOM manufactures products that are new or equivalent to new in accordance with industry standard. NEXCOM warrants that products will be free from defect in material and workmanship for 2 years, beginning on the date of invoice by NEXCOM. HCP series products (Blade Server) which are manufactured by NEXCOM are covered by a three year warranty period.

NEXCOM Return Merchandise Authorization (RMA)

- Customers shall enclose the "NEXCOM RMA Service Form" with the returned packages.
- Customers must collect all the information about the problems encountered and note anything abnormal or, print out any on-screen messages, and describe the problems on the "NEXCOM RMA Service Form" for the RMA number apply process.
- Customers can send back the faulty products with or without accessories (manuals, cable, etc.) and any components from the card, such as CPU and RAM. If the components were suspected as part of the problems, please note clearly which components are included. Otherwise, NEXCOM is not responsible for the devices/parts.
- Customers are responsible for the safe packaging of defective products, making sure it is durable enough to be resistant against further damage and deterioration during transportation. In case of damages occurred during transportation, the repair is treated as "Out of Warranty."
- Any products returned by NEXCOM to other locations besides the customers' site will bear an extra charge and will be billed to the customer.

Repair Service Charges for Out-of-Warranty Products

NEXCOM will charge for out-of-warranty products in two categories, one is basic diagnostic fee and another is component (product) fee.

Repair Service Charges for Out-of-Warranty Products

NEXCOM will charge for out-of-warranty products in two categories, one is basic diagnostic fee and another is component (product) fee.

System Level

- Component fee: NEXCOM will only charge for main components such as SMD chip, BGA chip, etc. Passive components will be repaired for free, ex: resistor, capacitor.
- Items will be replaced with NEXCOM products if the original one cannot be repaired. Ex: motherboard, power supply, etc.
- Replace with 3rd party products if needed.
- If RMA goods can not be repaired, NEXCOM will return it to the customer without any charge.

Board Level

- Component fee: NEXCOM will only charge for main components, such as SMD chip, BGA chip, etc. Passive components will be repaired for free, ex: resistors, capacitors.
- If RMA goods can not be repaired, NEXCOM will return it to the customer without any charge.

Warnings

Read and adhere to all warnings, cautions, and notices in this guide and the documentation supplied with the chassis, power supply, and accessory modules. If the instructions for the chassis and power supply are inconsistent with these instructions or the instructions for accessory modules, contact the supplier to find out how you can ensure that your computer meets safety and regulatory requirements.

Cautions

Electrostatic discharge (ESD) can damage system components. Do the described procedures only at an ESD workstation. If no such station is available, you can provide some ESD protection by wearing an antistatic wrist strap and attaching it to a metal part of the computer chassis.

Safety Information

Before installing and using the device, note the following precautions:

- Read all instructions carefully.
- Do not place the unit on an unstable surface, cart, or stand.
- Follow all warnings and cautions in this manual.
- When replacing parts, ensure that your service technician uses parts specified by the manufacturer.
- Avoid using the system near water, in direct sunlight, or near a heating device
- The load of the system unit does not solely rely for support from the rackmounts located on the sides. Firm support from the bottom is highly necessary in order to provide balance stability.
- The computer is provided with a battery-powered real-time clock circuit. There is a danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended by the manufacturer. Discard used batteries according to the manufacturer's instructions.

Installation Recommendations

Ensure you have a stable, clean working environment. Dust and dirt can get into components and cause a malfunction. Use containers to keep small components separated.

Adequate lighting and proper tools can prevent you from accidentally damaging the internal components. Most of the procedures that follow require only a few simple tools, including the following:

- A Philips screwdriver
- A flat-tipped screwdriver
- A grounding strap
- An anti-static pad

Using your fingers can disconnect most of the connections. It is recommended that you do not use needle-nose pliers to disconnect connections as these can damage the soft metal or plastic parts of the connectors.

Safety Precautions

- 1. Read these safety instructions carefully.
- 2. Keep this User Manual for later reference.
- 3. Disconnect this equipment from any AC outlet before cleaning. Use a damp cloth. Do not use liquid or spray detergents for cleaning.
- 4. For plug-in equipment, the power outlet socket must be located near the equipment and must be easily accessible.
- 5. Keep this equipment away from humidity.
- 6. Put this equipment on a stable surface during installation. Dropping it or letting it fall may cause damage.
- 7. The openings on the enclosure are for air convection to protect the equipment from overheating. DO NOT COVER THE OPENINGS.
- 8. Make sure the voltage of the power source is correct before connecting the equipment to the power outlet.
- 9. Place the power cord in a way so that people will not step on it. Do not place anything on top of the power cord. Use a power cord that has been approved for use with the product and that it matches the voltage and current marked on the product's electrical range label. The voltage and current rating of the cord must be greater than the voltage and current rating marked on the product.
- 10. All cautions and warnings on the equipment should be noted.

- 11. If the equipment is not used for a long time, disconnect it from the power source to avoid damage by transient overvoltage.
- 12. Never pour any liquid into an opening. This may cause fire or electrical shock
- 13. Never open the equipment. For safety reasons, the equipment should be opened only by qualified service personnel.
- 14. If one of the following situations arises, get the equipment checked by service personnel:
 - a. The power cord or plug is damaged.
 - b. Liquid has penetrated into the equipment.
 - c. The equipment has been exposed to moisture.
 - d. The equipment does not work well, or you cannot get it to work according to the user's manual.
 - e. The equipment has been dropped and damaged.
 - f. The equipment has obvious signs of breakage.
- 15. Do not place heavy objects on the equipment.
- 16. The unit uses a three-wire ground cable which is equipped with a third pin to ground the unit and prevent electric shock. Do not defeat the purpose of this pin. If your outlet does not support this kind of plug, contact your electrician to replace your obsolete outlet.
- 17. CAUTION: DANGER OF EXPLOSION IF BATTERY IS INCORRECTLY REPLACED. REPLACE ONLY WITH THE SAME OR EQUIVALENT TYPE RECOMMENDED BY THE MANUFACTURER. DISCARD USED BATTERIES ACCORDING TO THE MANUFACTURER'S INSTRUCTIONS.

Technical Support and Assistance

- 1. For the most updated information of NEXCOM products, visit NEXCOM's website at www.nexcom.com.
- 2. For technical issues that require contacting our technical support team or sales representative, please have the following information ready before calling:
 - Product name and serial number
 - Detailed information of the peripheral devices
 - Detailed information of the installed software (operating system, version, application software, etc.)
 - A complete description of the problem
 - The exact wordings of the error messages

Warning!

- 1. Handling the unit: Carry the unit with both hands and handle it with care.
- 2. Maintenance: To keep the unit clean, use only approved cleaning products or clean with a dry cloth.
- 3. CFast: Turn off the unit's power before inserting or removing a CFast storage card.

Conventions Used in this Manual

Warning:

Information about certain situations, which if not observed, can cause personal injury. This will prevent injury to yourself when performing a task.

Caution:

Information to avoid damaging components or losing data.

Note:

Provides additional information to complete a task easily.

Safety Warning: This equipment is intended for installation in a Restricted Access Location only.

Global Service Contact Information

Headquarters NEXCOM International Co., Ltd.

9F, No. 920, Chung-Cheng Rd., ZhongHe District, New Taipei City, 23586, Taiwan, R.O.C.

Tel: +886-2-8226-7786 Fax: +886-2-8226-7782

America USA NEXCOM USA

www.nexcom.com

2883 Bayview Drive, Fremont CA 94538, USA Tel: +1-510-656-2248 Fax: +1-510-656-2158 Email: sales@nexcom.com

Asia Taiwan NEXCOM Intelligent Systems Taipei Office

13F, No.920, Chung-Cheng Rd., ZhongHe District, New Taipei City, 23586, Taiwan, R.O.C.

Tel: +886-2-8226-7796 Fax: +886-2-8226-7792

Email: sales@nexcom.com.tw

www.nexcom.com.tw

NEXCOM Intelligent Systems Taichung Office

16F, No.250, Sec. 2, Chongde Rd., Beitun Dist., Taichung City 406, R.O.C. Tel: +886-4-2249-1179

Fax: +886-4-2249-1172 Email: sales@nexcom.com.tw

Japan NEXCOM Japan

www.nexcom.com.tw

9F, Tamachi Hara Bldg., 4-11-5, Shiba Minato-ku, Tokyo, 108-0014, Japan Tel: +81-3-5419-7830 Fax: +81-3-5419-7832

Email: sales@nexcom-jp.com www.nexcom-jp.com

China NEXCOM China

1F & 2F, Block A, No. 16 Yonyou Software Park, No. 68 Beiqing Road, Haidian District, Beijing, 100094, China

Tel: +86-10-5704-2680 Fax: +86-10-5704-2681 Email: sales@nexcom.cn

www.nexcom.cn

NEXCOM Shanghai

Room 603/604, Huiyinmingzun Plaza Bldg., 1, No.609, Yunlin East Rd., Shanghai, 200333, China

Tel: +86-21-5278-5868 Fax: +86-21-3251-6358 Email: sales@nexcom.cn www.nexcom.cn

NEXCOM Surveillance Technology Corp.

Room202, Building B, the GuangMing Industrial Zone Zhonghua Rd., Minzhi Street, Longhua District, Shenzhen 518131, China

Tel: +86-755-8364-7768 Fax: +86-755-8364-7738

Email: steveyang@nexcom.com.tw

www.nexcom.cn

NEXCOM United System Service

Hui Yin Ming Zun Building Room 1108, Building No. 11, 599 Yunling Road, Putuo District, Shanghai. 200062. China

Tel: +86-21-6125-8282 Fax: +86-21-6125-8281 Email: frankyang@nexcom.cn

www.nexcom.cn

Europe United Kingdom NEXCOM EUROPE

10 Vincent Avenue, Crownhill Business Centre, Milton Keynes, Buckinghamshire MK8 0AB, United Kingdom

Tel: +44-1908-267121 Fax: +44-1908-262042 Email: sales.uk@nexcom.eu

www.nexcom.eu

Italy NEXCOM ITALIA S.r.l

Via Lanino 42, 21047 Saronno (VA), Italia Tel: +39 02 9628 0333

Fax: +39 02 9625 570 Email: nexcomitalia@nexcom.eu

www.nexcomitalia.it

Package Contents

Before continuing, verify that the package that you received is complete. Your package should have all the items listed in the following table.

Item	Part Number	Description	Specification	Qty
1	4NCPF00310X00	Terminal Blocks 3P	3.81mm Female DIP Green	1
2	4NCPF00316X00	Terminal Blocks 3P	5.08mm Female 180D DIP Green	1
3	50311F0326X00	Flat Head Screw	F3x5 Nylok NI+Heat Treatment	8
4	50311F0330X00	Round Head Screw	P2x3 NI Nylok	4
5	5060600171X00	2.5 HDD Mylar E-LIN	96.2x70x0.1mm	1
6	5061500010X00	HDD Pulling Tab for NISE 4000	100x35mm T=0.45mm Silicon	1
7	6012200052X00	PE Zipper Bag #8	170x240mm, w/China RoHS Symbol	1
8	6012200053X00	PE Zipper Bag #3	100x70mm, w/China RoHS Symbol	2
9	60177A0489X00	NIFE 300 Quick Reference Guide VER:A Size:A4	Kramer	1
10	6029900037X00	DOW Corning 340 Silcone Heat Sink Compound (3g)		1
11	602DCD1113X00	NIFE 300 DVD Driver VER:1.0	JCL	1

Ordering Information

The following information below provides ordering information for the NET 300 series.

NET 300 (P/N: A0J10030000X0)

Front-access high-performance EtherCAT controller

Image Selection

NET 300-ECM WES7 32-bit & RTX 2012 (P/N:88J10030000X0) NET 300-ECM WES7 32-bit & RTX 2016 (P/N:88J10030001X0) NET 300-ECM WES7 64-bit & RTX64 3.0 (P/N:88J10030002X0)

 24V, 120W AC to DC power adapter w/o power core (P/N: 7400120015X00)

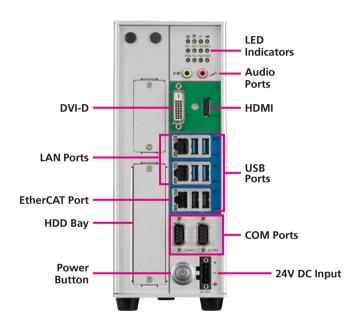
CHAPTER 1: PRODUCT INTRODUCTION

Overview

NET 300-ECM is a high-performance EtherCAT controller, built in 6th generation Intel® Core™ i5-6500TE processor (Skylake-S). Based on a real-time operating system, NET 300-ECM's communication cycle time can be up to 250 µs, and also offers EtherCAT distributed clocks functions. The EtherCAT controller supports up to 64 slave modules which could be a wide variety of third-party devices, such as servo motors/drives and I/O modules. NET 300-ECM is the ideal intelligence system for machine applications. Its front-access I/O design simplifies the wiring, and it provides expansion mini-PCIe slot which can integrate other fieldbus devices for more application possibilities.

Key Features

- EtherCAT technology with NexECM, Class A EtherCAT Master
- EtherCAT communication cycle up to 250 μs
- Support high-level API for CiA 402 profile
- Support 6th generation Intel[®] Core[™] i5-6500TE processor
- Intel® Q170 PCH
- 1x DVI-D, and 1x HDMI for dual independent display support
- 4x USB 3.0, 2x USB 2.0 and 2x RS232/422/485 auto
- 1x Front access 2.5" SATA HDD tray
- 2x mini-PCle socket support optional modules and mSATA device
- 1x External CFast socket and 1x SIM card socket



Product Appearance

Front View

LED Indicators

Indicates the power, hard drive, CFast, battery, COM1/2 and GPO activity of the system.

Audio Ports

Line-out and mic-in ports to connect headphones, speakers or microphones.

DVI-D

Used to connect a digital LCD panel.

HDMI

Used to connect a high-definition display.

LAN Ports

LAN 1: EtherCAT LAN port.

LAN 2 and LAN 3: GbE LAN port used to connect the system to a local area network.

USB Ports

USB 2.0 and USB 3.0 ports to connect the system with USB devices.

HDD Bay

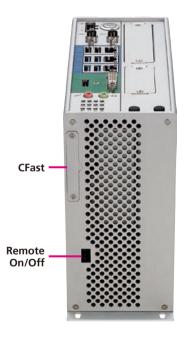
A hard drive bay used to install 2.5" HDDs.

COM1 and COM2

Two DB9 ports used to connect RS232/422/485 compatible devices.

Power Button

Press to power-on or power-off the system.


24V DC Input

Used to plug a DC power cord.

Top View

Fieldbus Module Expansion

Expansion slot for add-on fieldbus mini-PCIe modules.

Remote On/Off Switch

Used to connect a remote to power on/off the system.

CFast Slot

Used to insert a CFast card.

Hardware Specifications

EtherCAT Master

- Slave module no.: up to 64
- Cycle time: up to 250µs
- Synchronization error: ±50ns
- Support CiA 402 standard protocol

CPU Support

 Support 6th generation Intel® Core™ i5-6500TE. Ouad Core. 2.3GHz. 6M Cache

Main Memory

1x 4GR DDR4 SO-DIMM

Display Option

- Dual independent display
 - HDMI + DVI-D

Front I/O Interface

- 1x ATX power on/off switch
- 1x HDMI and 1x DVI-D
- 4x USB 3.0 ports (900mA per each)
- 2x USB 2.0 ports (500mA per each)
- 1x Line-out and 1x Mic-in
- 2x Antenna holes for Wi-Fi/GSM
- 1x Front access 2.5" HDD tray
- 1x mini-PCle expansion support optional modules
- 2x RS232/422/485 auto with 2 5KV Isolation
- 3x Intel® I210IT GbE LAN ports, support WoL, teaming and PXE

Top I/O Interface

- 1x 3-pin remote switch
- 1x CFast expansion
- 1x SIM card

Storage Device

- 1x CFast (SATA 3.0)
- 1x 2.5" HDD (external, SATA 3.0)
- 1x 2.5" HDD (internal, SATA 3.0)
- 1x mSATA (via internal Mini-PCle socket)

Expansion Slot

2x mini-PCle sockets for optional Wi-Fi/3.5G/4G LTE/Fieldbus modules

Power Requirements

- AT/ATX power mode (default with ATX power mode)
- Power input: typical +24V_{DC} ±20%, with reverse polarity protection
 Power adapter: optional AC to DC power adapter (+24V_{DC}, 120W)

Dimensions

• 90 mm (W) x 185mm (D) x 251mm (H)

Construction

Aluminum and metal chassis with front access design

Environment

 Operating Temperature: Ambient with air flow: -5°C to 55°C (according to IEC60068-2-1, IEC60068-2-2, IEC60068-2-14)

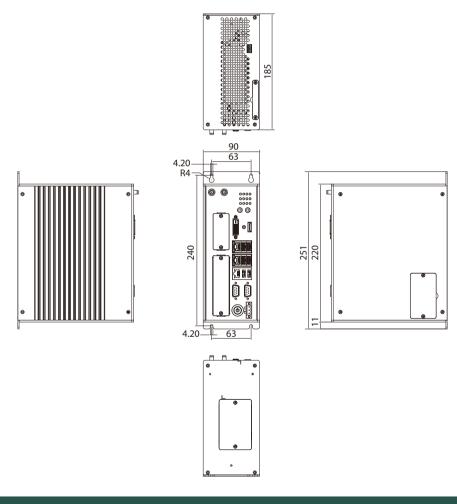
- Storage Temperature: -20°C to 85°C
- Relative Humidity: 10% to 93% (non-condensing)
- Shock Protection:
 - HDD: 20G, half sine, 11ms, IEC60068-27
 - CFast: 50G, half sine, 11ms, IEC60068-27
- Vibration protection w/HDD condition:
 - Random: 0.5Grms @ 5~500 Hz. IEC60068-2-64
 - Sinusoidal: 0.5Grms @ 5~500 Hz, IEC60068-2-64

Certifications

- CE Approval
 - EN61000-6-2
 - EN61000-6-4
- FCC Class A
- LVD

Pre-Installed Software Package

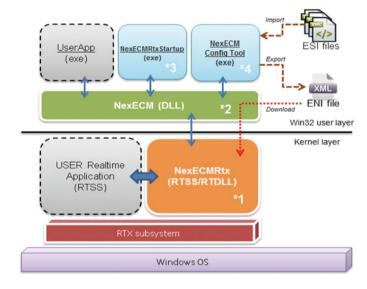
- Operating system: Windows Embedded Standard 7
- Real-time extension:
 - RTX2012/RTX2016 for 32-bit OS
 - RTX2014/RTX64 3.0 for 64-bit OS
- EtherCAT Master: NexECM
- EtherCAT configurator


EtherCAT Support Table

Feature Name	Short Description	NexECMRtx
Basic Features		
Service Commands	Support of all commands	✓
IRQ Field in Datagram	Use IRQ information from Slave in datagram header	✓

Slaves with	Support Slaves with and without	√
Device Emulation	application controller	v
EtherCAT State Machine	Support of ESM special behavior	✓
F	Checking of network or slave errors,	,
Error Handling	e.g. working counter	•
Process Data Exchange		
Cyclic PDO	Cyclic process data exchange	✓
Network Configuration		
Reading ENI	Network configuration taken from ENI file	✓
Compare Network	Compare configured and existing	<u> </u>
Configuration	network configuration during boot-up	v
Explicit Device	Identification used for hot connect and	√
Identification	prevention against cable swapping	•
Station Alias	Support configured station alias in	
Addressing	slave, i.e. enable 2nd Address and	✓
	use it	
Access to EEPROM	Support routines to access EEPROM via	✓
	ESC register	
Mailbox Support		
Support Mailbox	Main functionality for mailbox transfer	✓
Mailbox Polling	Polling mailbox state in slaves	✓
CAN Application Layer Over EtherCAT (CoE)		
SDO Up/Download	Normal and expedited transfer	✓
Complete Access	Transfer the entire object	✓
Complete Access	(with all sub-indices) at once	•
Distributed Clocks		
DC	Support of distributed clock	✓

Mechanical Dimensions



CHAPTER 2: SOFTWARE OPERATION

NET 300-ECM is an EtherCAT master controller based on IntervalZero's real-time extension RTX. NET 300-ECM integrates NEXCOM's EtherCAT master software, NexECMRtx, to implement real-time operation and high performance communication.

NET 300-ECM Pre-Installed Software Package

- Operating system: Windows Embedded Standard
- Real-time extension: RTXEtherCAT master: NexECMRtx
- EtherCAT configurator

System Structure

- (*1) NexECMRtx.rtss EtherCAT Master Runtime stack
- (*2) NexECM.dll EtherCAT Master Win32 API libraries
- (*3) NexECMRtxStartup.exe EtherCAT Master Startup utility
- (*4) NexECM Config Tool.exe EtherCAT Master Configuration utility

The next section describes how to get started with the NET series platform, and the detailed steps of software operation.

7

NexECM Introduction

NexECMRtx is an EtherCAT Master Communication Protocol solution. It is based on IntervalZero's RTX (RTX is a real-time extension on Microsoft Windows) to offer real-time communication between EtherCAT master and EtherCAT slave devices. NexECMRtx offers high level C/C++ APIs for rapid application development.

NexECMRtx also provides a configuration utility - NexECM EtherCAT configuration tool, a graphic user interface tool for customers to edit parameters for EtherCAT communication between master and slave devices. Its functions are as follows:

- Step 1. Scan EtherCAT slave devices
- Step 2. Import ESI file, and export ENI file
- Step 3. Configure EtherCAT slave devices
- Step 4. Monitor EtherCAT communication quality
- Step 5. Test functions for EtherCAT slave devices

According to the EtherCAT standard document: ETG.1500, NexECMRtx currently supports Master functions, which are shown in the table below:

✓: Ready, △: By Project Request

Feature Name	Short Description NexECMR	
Basic Features		
Service Commands	Support of all commands	✓
IRQ Field in Datagram	Use IRQ information from Slave in datagram header	✓
Slaves with Device Emulation	Support Slaves with and without application controller	✓

EtherCAT State Machine	Support of ESM special behavior	✓
Error Handling	Checking of network or slave errors, e.g. working counter	✓
Process Data Exchange		
Cyclic PDO	Cyclic process data exchange	✓
Network Configuration	ı	
Reading ENI	Network configuration taken from ENI file	✓
Compare Network Configuration	Compare configured and existing network configuration during boot-up	✓
Explicit Device Identification	Identification used for hot connect and prevention against cable swapping	~
Station Alias Addressing	Support configured station alias in slave, i.e. enable 2nd Address and use it	√
Access to EEPROM	Support routines to access EEPROM via ESC register	✓
Mailbox Support		
Support Mailbox	Main functionality for mailbox transfer	✓
Mailbox Polling	Polling mailbox state in slaves	✓
CAN Application Layer	Over EtherCAT (CoE)	
SDO Up/Download	Normal and expedited transfer	✓
Complete Access	Transfer the entire object (with all sub-indices) at once	✓
SDO Info Service	Services to read object dictionary	✓
Emergency Message	Receive emergency messages	✓

Ethernet over EtherCAT (EoE)		
EoE Ethernet over EtherCAT △		Δ
File over EtherCAT (FoE)	
FoE	File over EtherCAT	Δ
Servo over EtherCAT (SoE)		
SoE	Servo over EtherCAT	Δ
Distributed Clocks		
DC	Support of Distributed Clock	✓

Documents for more detailed information about NexECM can be found from **Start** > **All Programs** > **NEXCOM** > **NexECMRtx** > **Doc**.

RTX Activation

Every NET series platform comes with a sticker on the bottom of the platform that contains a set of RTX activation key. You need to activate RTX with the runtime license to start EtherCAT master and related operations. The steps required to activate your product will depend on whether or not the machine is connected to the Internet.

Figure 1. RTX Activation Key Sticker

Activate RTX with Internet Connection

Step 1. Open the **Activation and Configuration** dialog. This dialog appears once RTX has been installed. You can also launch it from **Start** > **All Programs** > **IntervalZero** > **RTX 2012** > **RTX Activation**.



Figure 2. Activation Dialog

Step 2. Make sure your machine is connected to the Internet with access to the License Server. If no network connection is found, make sure all network cables are plugged in and click the Network icon to refresh. If a network connection still isn't found, you may need to configure a Proxy Server.

Step 3. Enter the activation key and then click **Activate**. The product components activated by your key are indicated by a check mark in the *Components* box.

You need to enter the full Activation Key at once! Take *Figure. 1* as example, the Activation key you should key in is:

RTX-110-0782-2135-1124-8271-TCP-110-0784-2135-6459-7317

Figure 3. Key Section in the Sticker

Activate RTX without Internet Connection

If the computer on which you installed RTX is not connected to the Internet, the activation process requires a few additional steps.

- Step 1. Open the **Activation and Configuration** dialog. You can launch it from **Start** > **All Programs** > **IntervalZero** > **RTX 2012** > **RTX Activation**.
- Step 2. Check your Internet connection. Continue with these steps only if there is no connection to the Internet. If you are connected, follow the steps in the previous section.
- Step 3. Enter your activation key and then click **Activate**.

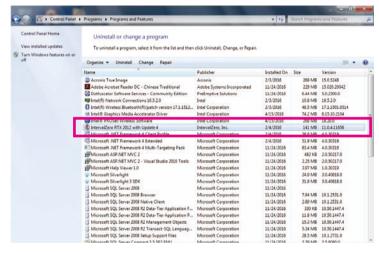
Step 4. In the dialog that appears, click **Yes** to create a fingerprint file.

Figure 4. Fingerprint Dialog

- Step 5. In the *Save As* dialog, name the file fingerprint.rfp. By default, the file will be saved to the desktop.
- Step 6. Navigate to the desktop, and then copy and paste the file fingerprint.rfp to an external device.
- Step 7. Connect the device to a machine with Internet connectivity.
- Step 8. Launch a web browser, and navigate to http://Activation.IntervalZero.com.

Figure 5. Product Activation Website

- Step 9. Browse for and open the file fingerprint.rfp.
- Step 10. Click Activate to generate a license (.lic) file.
- Step 11. In the *File Download* dialog, click *Save*.
- Step 12. Copy the file License.lic to the external device, and transfer it to the machine on which RTX is installed.
- Step 13. In the **Product Activation** dialog, click **Import License File**.
- Step 14. Browse for and open the file License.lic.


Microsoft Visual Studio Installation

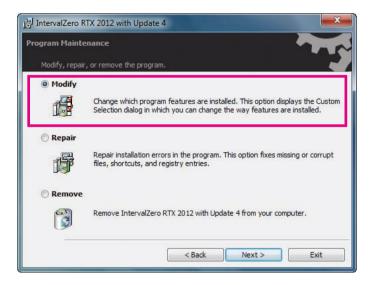
For all of the NET series platforms, RTX are pre-installed. If you want to build RTX programs in Visual Studio, please refer to the following installation steps.

Step 1. Install Visual Studio. The supported versions list is in the table below.

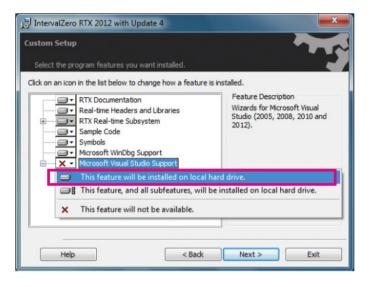
Operating System	RTX Version	Visual Studio Version
WES7, 32-bit RTX 2012	RTX 2012	Visual Studio 2010 Visual Studio 2012
	Visual Studio 2013 Visual Studio 2015	
WES7, 64-bit RTX64 2014 RTX64 3.0	RTX64 2014	Visual Studio 2013 and up
	RTX64 3.0	Visual Studio 2013 and up

Step 2. After installation, please check the RTX Version on the NET platform. (*Windows* > *Start Menu* > *Control Panel* > *Programs* > *Programs* and *Features*). As shown in the example, the version is IntervalZero RTX 2012 with Update 4.

- Step 3. Download the related RTX runtime installation file, from the IntervalZero download site.
 - RTX 2102 (http://www.intervalzero.com/rtx-2012-downloads/)
 - RTX 2016 (http://www.intervalzero.com/rtx-2016-downloads/)
 - RTX64 2014
 (https://www.intervalzero.com/rtx-downloads/rtx64-downloads/rtx64-2014-downloads)
 - RTX64 3.0 (https://www.intervalzero.com/rtx-downloads/rtx64-downloads/ rtx64-3-0-downloads)

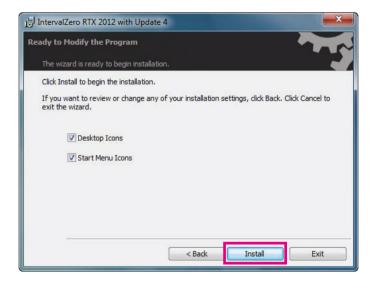


Step 4. Double-click the RTX install package, and click **Next** >.

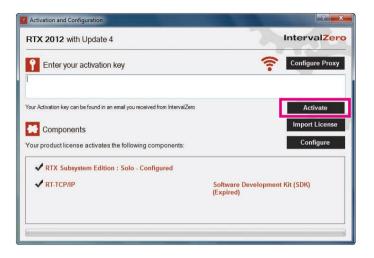


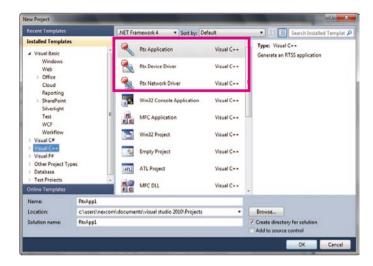
Step 5. Select *Modify*.

Step 6. Add the installed Visual Studio software in the list.




Step 7. Click **Next >**.

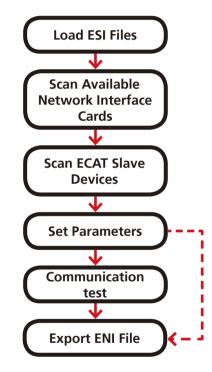

Step 8. Click *Install*, and then click *Finish*.



Step 9. Activate RTX license, you can refer to the previous section for the activation steps.

Step 10. After completing the steps, you can start to build your RTX program.

EtherCAT Utilities


EtherCAT Configuration Tool

You can achieve the following with the NexECM Configuration Tool master utility:

- 1. Scan EtherCAT slave device
- 2. Import ESI file, and export ENI file
- 3. Edit CoE slave devices PDO mapping
- 4. ProcessData access
- 5. CoE slave devices SDO communication test
- 6. Monitor EtherCAT communication quality
- 7. Test slave devices' operation

Operation Flow

The basic operation flow of NexECM Configuration Tool is as follows:

ESI: An XML file to describe the EtherCAT Slave Devices Information. ENI: An XML file to describe the EtherCAT Network Information.

Load ESI Files:

When NexECM Configuration Tool starts, it will automatically import all the files in the folder whose location is "Program Files/NEXCOM/NexECMRtx/tools/x32/ESI_File" or "Program Files/NEXCOM/NexECMRtx/tools/x32/ESI_File."

Scan Available Network Interface Cards:

NexECM Configuration Tool detects RTX environment and automatically finds all available network interface cards. RTX network interface card drivers are pre-installed on every NET series platform, and LAN1 of the platform is set as EtherCAT port.

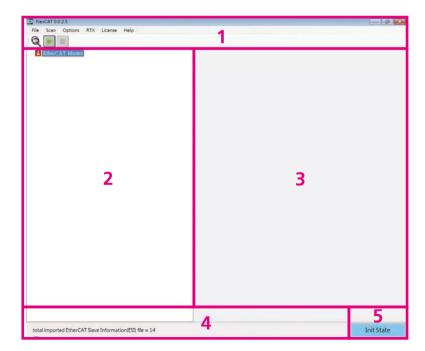
Scan FCAT Slave Devices:

NexECM Configuration Tool scans the ECAT slave devices on the selected network port. If a device has no matched ESI file (VendorID, DevicID not matched), it will be defined as "Unknown". Move the mouse cursor to "Unknown" device will pop up the hardware information (VendorID, DeviceID and RevisionNumber).

Set Parameters:

NexECM Configuration Tool generates the plan of PDO and ProcessData memory according to ESI files, then export to ENI file automatically. Users can also use the NexECM Configuration Tool built-in PDO mapping editor to customize their own plan, and then export the final setting to ENI file.

Communication Test:


User can start all the EC-Slave devices directly; the status will be changed from initial state (INIT) to operation state (OP). If there is a slave device which cannot be transferred to the operation state successfully, you can find the status and messages from the main page's area 4 and area 5 (in the following figure).

Export ENI file:

If the tests on each devices show normal, the user can use the function "Export ENI", to export the ENI file to the storage device. Actually, when you use the "Start Network" feature, the system automatically exports the current settings and network topology to ENI file. (The default path is C:\ENI NexCAT Export.xml)

NexECM Configuration ToolMain Page

The NexECM Configuration Tool Main Page is divided into 5 areas, we will explain it in the following:

Area 1:

Shows the software name and version, e.g. NexECM Configuration Tool0025

Icon	Description
Q	Scan NIC: Find the available network interface and display it on the form
	Start Network: Start communication and export ENI file to the default path (C:\)
	Stop Network: Stop all communication of EtherCAT slave devices

Area 2:

Shows the entire network topology and all online EtherCAT slave devices. If the EtherCAT slave device fails to be scanned and shows "Unknown", please update the ESI file of the slave device by contacting the slave device supplier and import it again.

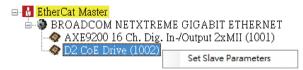
"Unknown" device: Popup info when cursor is moved onto the item.

Area 3:

Shows the menu of parameters. You can set the slave device parameters and master parameters here.

Area 4:

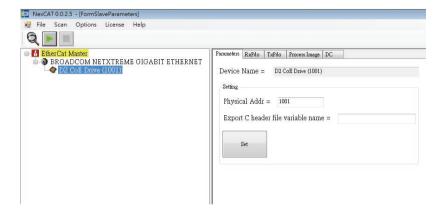
Shows message and error code.

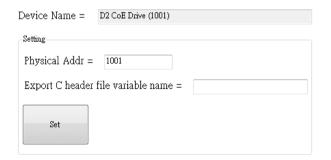

Area 5:

Shows the state of EtherCAT slave devices. Currently we have 4 states:

- 1. **Initial:** There is no communication and all slave devices are in initial state.
- Error: There is communication but slave devices cannot be switched to OP state. Common errors are: ENI file does not match with the actual network topology; ESI version does not match with the slave device version and so on.
- 3. **Retry:** When the parameter "Link Error Mode" of ECAT master is set to "Auto re-connect" (refer to the NexECMRtx User Manual "Chapter 3.1.6") and slave device is in "OP" state but experiencing a link problem, the master will show "Retry" status and attempt to re-connect the disconnected slaves until they are working. Master will also try to reconnect those lost link modules, while other modules can operate as usual. This status is displayed continuously until all slaves are back to "OP" state.
- 4. Running: Network is connected and all slave devices are in "OP" state.

Set Slave Parameters


Select the slave device and right click to bring up a pop-up menu, choose "Set Slave Parameters".



Slave device setting page must be used before starting the Network, because all the parameters changed are valid only before the start of the Network. If user changed the settings after starting the Network, a network re-start is needed.

1. Parameters Tab

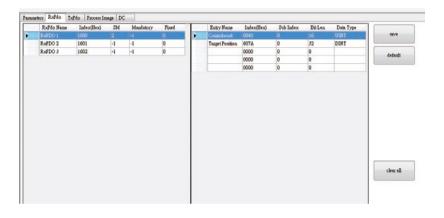
Device Name: Shows the name of current selected slave device.

Physical Addr: Defines the node address (configured address) for a slave device.

Export C header file variable name: Exports the process image for each slave, it must be used with function "Export C file" of Master Parameters setting (refer to the NexECMRtx User Manual "Chapter 3.1.6").

#define _Physical Addrdsss (+variable name)_ObjectName
[ProcessData offset]

Example:


Export C header file variable name= "_AXIS"

Export C header will be:

#define _1001_AXIS_Statusword	16777216
<pre>#define _1001_AXIS_PositionActualValue</pre>	16777218
<pre>#define _1001_AXIS_VelocityActualValue</pre>	16777222
#define _1001_AXIS_Controlword	16777216
<pre>#define _1001_AXIS_TargetPosition</pre>	16777218

2. RxPdo & TxPdo Tab

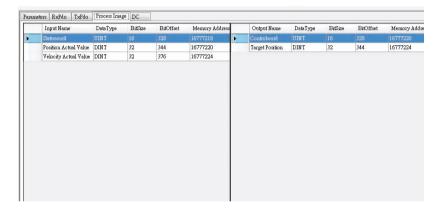


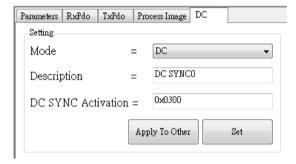
Table Description:

- RxPdo(TxPdo) Name: Default name is based from ESI file, user can change and export it to ENI.
- **Index:** Parameters from CoE. Changes are not recommended.
- **SM:** Number of Sync Manager, user can change the value.
- Mandatory: Defines the necessary parameters.
- **Fixed:** Defines which parameter the user can change.
- Entry Name: From CoE, user can change and export it to ENI.
- Indicator: Parameter from CoE. Changes are not recommended.
- **Sub Indicator:** Parameter from CoE. Changes are not recommended.
- BitLen: Parameter from CoE. Changes are not recommended.
- DataType: Parameter from CoE. Changes are not recommended.
- Save Button: Save changes after editing.
- Default Button: Revert to default ESI setting.
- Clear All Button: Clear PDO setting.

3. Process Image Tab

User can edit settings in the "RxPdo" or "TxPdo" tab. After editing, you can check the corresponding memory address in this tab. The edited settings will be valid after you click on the *save* button.

Table description:


- Input(Output) Name: Uses the name in the "RxPdo" or "TxPdo" tab.
- BitSize: Variables Memory Size.
- **BitOffset:** Variable Offset (based on setting in "RxPdo" or "TxPdo").
- **Memory Address:** Variables Memory Address.

20

4. DC Tab

This tab is used to set DC mode. Default DC settings of each slave are from its FSI file

Mode (Description):

Select the DC mode. If the slave supports DC mode, the default is enable "DC" sync mode. As long as (a) slave(s) device's DC mode can be selected in the network, EtherCAT Master will have a DC output information (function) of ENI File. To turn off the DC function from the network, the user must set all slaves as "free run" mode.

DC SYNC Activation: (ESC Register 0x0980~0x0981)

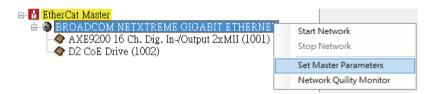
0x0000 - Disable SYNC0 & SYNC1 (Free Run)

0x0300 - Activate SYNC0 (DC Sync)

0x0700 - Activate SYNC0 & SYNC1

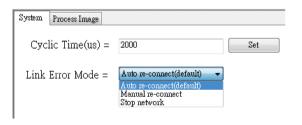
This is an advanced setting. This column will be displayed according to the ESI file selected in the DC mode. It is used to control DC SYNC signal output. Generally leave it at default.

Apply To Other:


Apply current slave device's settings to other slaves. Clicking the button will pop up the following dialog.

Set Master Parameters

Select the device and right click to bring up the pop-up menu, choose "Set Master Parameters".



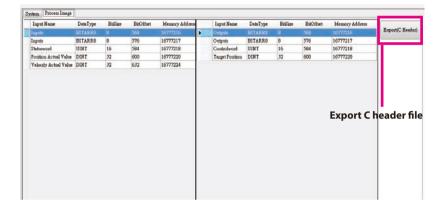
There are 2 tabs:

- 1. System
- 2. ProcessImage

Described as below:

System Tab

The Cyclic Time: Used to set the system performance. The values are communication time or refresh frequency between EC-Master and EC-Slave devices. The minimum value can't be larger than system limit value. This also can be set by calling API. Unit is micro second (us).


Link Error Mode: Behavior when there is a link error. After the network has been started, slave devices will be in "Operation" state. There are three modes when EC-Master detects the link error:

User also can set the mode by calling API, please refer to the NexECMRtx User Manual "Chapter 6.2".

- Auto re-connect(default): When a slave device loses communication, the main page "Area 5" will show "Slave Retry" message, while the system continues to re-connect automatically until the connection succeeds. Other slave devices continue to work at the same time.
- Manual re-connect: When a slave device loses communication, other slave devices will continue to work normally. The main page "Area 5" will show "Error message" and continue the next time when a network connection is successful.
- **Stop network:** When a slave device loses communication, EC-Master will stop the network. The main page "Area 5" will show "Error message".

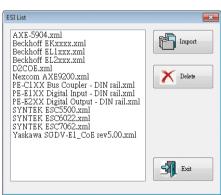
Process Image Tab

Network process image map

The format is the same with the process image of a slave described in the NexECMRtx User Manual "Chapter 3.1.5", but here you can see the memory allocation for the entire network topology, or use "Export C Header File" function to output variables of each slave device. You also can write your own program when the memory is accessed directly through the API.

Export C header file for process image map

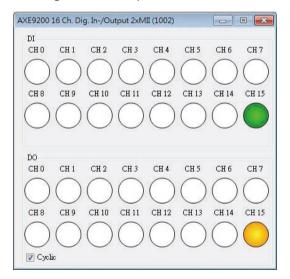
Click "Export C Header File" button.


PDO memory mapping offset can be output as a C header (*.h), It is easy to maintain your code using the define symbol when PDO mapping has changed. Output symbol format please refer to the NexECMRtx User Manual "Chapter 3.1.5".

ESI List (ESI File Management)

When using NexECM Configuration Tool to scan the devices, you can get how many slave devices and obtain hardware information (e.g. Device ID etc). Through comparing the information, NexECM Configuration Tool will get which ESI belongs to. (About ESI file please refer to the NexECMRtx User Manual "Chapter 3.1.3"). If users get a new ECAT slave device, they must import the ESI of the device.

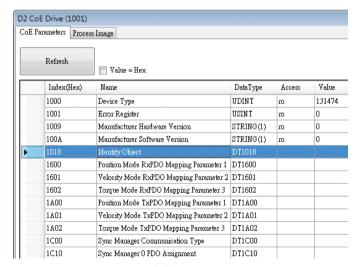
- 2 methods to manage the ESI files:
- 1. Add/Remove the ESI file to the specified folder directly. When you add a new ESI file, you need to restart the NexECM Configuration Tool.
- 2. Use "ESI list" page to import/delete ESI files. The action of import & delete is applied immediately. No need to restart the NexECM Configuration Tool


ESI List Page

DIO User Interface

In Area 2, double-click the selected DIO slave device which you want to test, the DIO operation menu will appear. NexECM Configuration Tool will determine the device for DI, DO or DIO devices and automatically calculate the number of IO.

When the mouse cursor is at the DO button, the user can manually press DO button to operate DO, or user can use the "Cyclic function" and let the DO slave device to run automatically to start Marquee features starting from small (0) to large, and repeated run. After you check the box for Cyclic, it operates automatically. After the check is canceled, the program stops at the last channel being executed in operation.

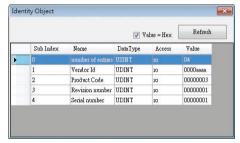


CoE-SDO Operation Page

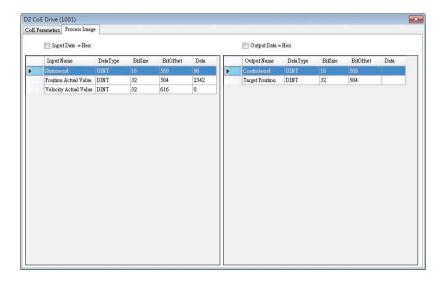
In Area 2, double-click the selected CoE slave device which you want to test, the CoE operation menu will appear. NexECM Configuration Tool will automatically determine whether the slave device supports CIA 402.

Press the Refresh button and this will update parameter values automatically, the user can choose to represent decimal or hexadecimal display format. If a parameter is float, then the parameter from binary system will display in float.

If the user wants to change parameters value, you can use the mouse and click the left button twice quickly to edit the parameters value. After editing is complete, press the Enter key or leave the table then it can be successfully written. If the write fails or does not meet the standard written format data form, the parameter values automatically go back to the state before editing.



CoE Parameters



If the parameter of data type is "dataType", it indicates that the parameters contain sub parameters (Sub index). The user may want to access the parameters by double-clicking the mouse, and determine if the program has sub parameters (Sub Indicator). There will be a child window shown below. It is the same to read and write as mentioned in previous chapter.

Sub Parameters

Process Image Parameters Operation Page

Users can access PDO (process data object) data after starting the network. When the checkbox "input data (output data) = hex" is checked, the data in the table is display as hexadecimal format.

Network Quality Monitor

Users can open network communication quality test page after starting the network. Perform a Master to each slave device communication packet test. To show this page, you can right click the mouse on the node of network card (NIC) in NexECM Configuration Tool Area 2 and select "Network Quality Monitor" and the Network quality test page will appear.

Right Click on the NIC node

Network Quality Monitor Page

- Inc Address: The Slave ID will follow the order of the scanned, zero based
- Send Frame Count: The numbers of test frames are sent to slave device, check if the slave devices are in "OP" state. The frequency of the send frames is 10 ms
- Recv Frame Count: The number of response frames. Normally, Both Send Frame Count and Recv Frame Count should be consistent.
- Lost Frame Count: Lost frames
- Error Frame Count: The return frames data content does not belong to the slave device and state I= OP

Their relationship are as the following:

Send Frame count = Recv Frame count + Lost Frame count Recv Frame count = Normal Frame (state == OP) + Error Data Frame count.

NexECMRtxStartup

"NexECMRtxStartup.exe" provides the convenience while you're using EtherCAT Master. Based on "NexECMRtxConfig.ini", we offer 3 major functions:

- 1. Load EtherCAT Master NexECMRtx.rtss
- 2. Download ENI file (EtherCAT Network Information)
- 3. Load user's RTX appliation (ex: UserRTXApp.rtss)

You can modify NexECMRtxStartup.ini content by "Notepad" or text editing software to meet your current files placed circumstances. Usually you need to modify "Application path" and "Network information file (ENI) path". You can find the ".ini" files "C:\Program Files\NEXCOM\NexECMRtx\tools". Please refer to the following illustration.

NexECMRtxConfig.ini Content

PATH_ENI

PATH:

Network Information File (ENI) Path
OPTION: Check the network interface card information by using ENI file.
0: Use ENI file.
1: Do not use ENI file, use Parameter setting.

PATH_NEXECMRTX_DRIVER

PATH:

NexECMRtx.rtss File Path

PATH_USER_APP (Option)

PATH:
Fill your RTX application (*.rtss) path and file name.

Acronis System Image Recovery

Every NET system platform is equipped with **Acronis Startup Recovery Manager** and users need to activate it in Windows first to enable its recovery function. **Acronis Startup Recovery Manager** is a modification of the bootable agent, residing on the system disk in Windows and configured to start at boot time on pressing F11. It eliminates the need for a separate media or network connection to start the bootable rescue utility.

Activate Acronis Startup Recovery Manager

Please refer to the following steps to activate **Acronis Startup Recovery Manager**.

Step 1. Open **Acronis** on your desktop, choose **Tools and utilities** page then click **Acronis Startup Recovery Manager**.

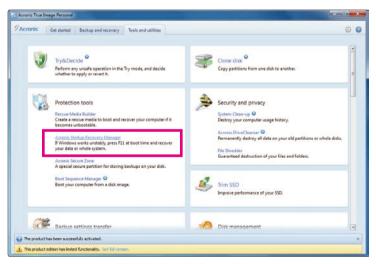


Figure 1. Acronis Startup Page

Step 2. Click **Activate**, then you will see the successful information. (Figure 3)

Figure 2: Acronis Startup Recovery Manager

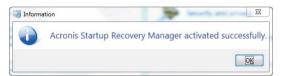


Figure 3: The Information for Startup Recovery Manager

Step 3. Reboot your NET Series platform, and if the following prompt appears on your screen, it means the configuration for **Acronis Startup Recovery Manager** was successful.

Starting Acronis Loader...
Press F11 to run Acronis Startup Recovery Manager...

Backup Your NET Series System

When the installations and license activations of the necessary software in Windows are done, users can backup system image for the complete system. Once the system is backed up, users can always recover the operating system despite of any OS problem. This allows users to have a clean and complete backup image for your NET Series System.

The following steps show you how to back up system image with **Acronis Tools**

Step 1. Double-click **Acronis** shortcut at desktop, and choose **Backup and** recovery page, then click **Back up data**.

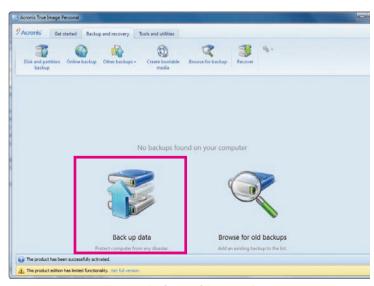


Figure 4. Backup and Recovery Page

Step 2. Back up the source to the **Acronis Secure Zone**, and name the backup file, then click **Back up now**.



Figure 5. Disk Backup Page

Step 3. Wait for a few minutes, the backup file for your system will be created in the **Acronis Secure Zone**.

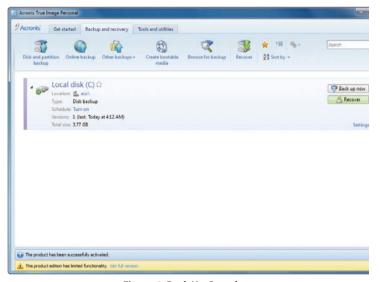


Figure 6. Back Up Complete

Figure 7. Acronis Secure Zone

Note: You can adjust the size for **Acronis Secure Zone** by referring to the following steps.

Step 1. Choose **Tools and utilities** page then click **Acronis Secure Zone**.

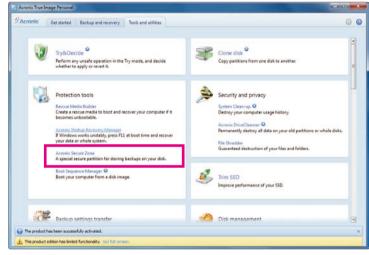


Figure 8. Adjust the Size for Acronis Secure Zone (1)

Step 2. Choose a selection which you need, then you will see the adjustment selections after you click **Next** >.



Figure 9. Adjust the Size for Acronis Secure Zone (2)

Step 3. Choose Disk 1: (C:), then you can adjust the size for **Acronis Secure Zone** (Figure 10), then click **Next >** to finish.

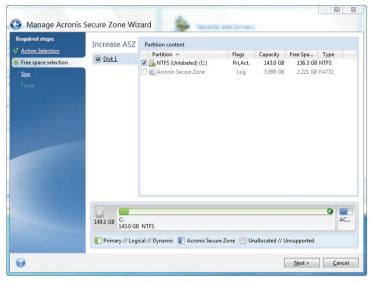


Figure 10. Adjust the Size for Acronis Secure Zone (3)

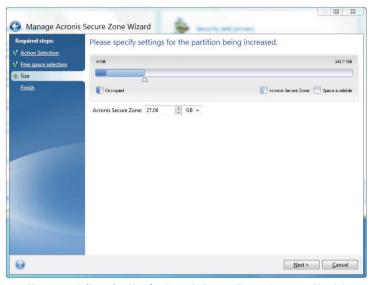


Figure 11. Adjust the Size for Acronis Secure Zone – Increase Size (4)

Recover Your NET Series System

This chapter shows you how to recover your system with **Acronis Startup Recovery Manager**. The prompt "**Press F11 for Acronis Startup Recovery Manager...**" will appear anytime you boot your system and you can simply hit the **F11** key on the keyboard to start the recovery process. The recovery function works even when the operating system fails.

The following steps will show you how to recover the system by using **Acronis Startup Recovery Manager**.

Step 1. Reboot the NET platform, when the following statement appears on your screen, hit **F11** immediately.

Starting Acronis Loader...
Press F11 to run Acronis Startup Recovery Manager...

- Step 2. Enter the Linux kernel command line: **quiet** in the Boot menu, then click **OK**.
- Step 3. After entering the **Acronis True Image Personal**, click **Acronis True Image**.
- Step 4. Wait for initialization to finish and enter into the Home page, click **Recover**, then you will enter the **Recovery Wizard System**.
- Step 5. In the **Recovery Wizard System**, you need to select the NET Series backup (which platform is used, e.g., NET3600...) in the Archive selection, then click the **Next >** button.

- Step 6. In the **Recovery method** page, choose **Recover whole disk and partitions**, then click the **Next >** button.
- Step 7. In the **What to recover** page, select NTFS(C:) in Disk 1, then click the **Next** > button.
- Step 8. In the **Specify settings of Partition C** page, the first part is **Partition location**, click **New location**, then choose NTFS(C:) and click **Accept**. The second part is **Partition Type**, click **Change default**, select Primary, then click **Accept**.
- Step 9. After completing Steps 1 to 8, you will see the **Summary** information in the **finish** page if those steps are set successfully. Click **Proceed** to start recovery.

CHAPTER 3: JUMPERS AND CONNECTORS

This chapter describes how to set the jumpers and connectors on the NET 300-FCM motherboard.

Before You Begin

- Ensure you have a stable, clean working environment. Dust and dirt can get into components and cause a malfunction. Use containers to keep small components separated.
- Adequate lighting and proper tools can prevent you from accidentally damaging the internal components. Most of the procedures that follow require only a few simple tools, including the following:
 - A Philips screwdriver
 - A flat-tipped screwdriver
 - A set of jewelers screwdrivers
 - A grounding strap
 - An anti-static pad
- Using your fingers can disconnect most of the connections. It is recommended that you do not use needle-nosed pliers to disconnect connections as these can damage the soft metal or plastic parts of the connectors.
- Before working on internal components, make sure that the power is off.
 Ground yourself before touching any internal components, by touching a metal object. Static electricity can damage many of the electronic components. Humid environments tend to have less static electricity than

dry environments. A grounding strap is warranted whenever danger of static electricity exists.

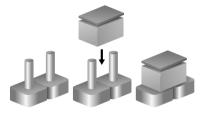
Precautions

34

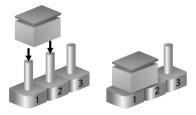
Computer components and electronic circuit boards can be damaged by discharges of static electricity. Working on computers that are still connected to a power supply can be extremely dangerous.

Follow the guidelines below to avoid damage to your computer or yourself:

- Always disconnect the unit from the power outlet whenever you are working inside the case.
- If possible, wear a grounded wrist strap when you are working inside the computer case. Alternatively, discharge any static electricity by touching the bare metal chassis of the unit case, or the bare metal body of any other grounded appliance.
- Hold electronic circuit boards by the edges only. Do not touch the components on the board unless it is necessary to do so. Don't flex or stress the circuit board.
- Leave all components inside the static-proof packaging that they shipped with until they are ready for installation.
- Use correct screws and do not over tighten screws.



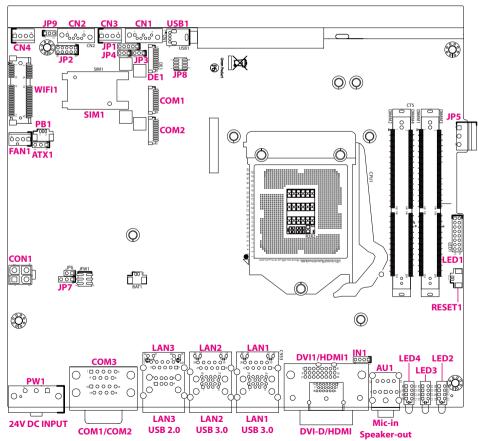
Jumper Settings


A jumper is the simplest kind of electric switch. It consists of two metal pins and a cap. When setting the jumpers, ensure that the jumper caps are placed on the correct pins. When the jumper cap is placed on both pins, the jumper is short. If you remove the jumper cap, or place the jumper cap on just one pin, the jumper is open.

Refer to the illustrations below for examples of what the 2-pin and 3-pin jumpers look like when they are short (on) and open (off).

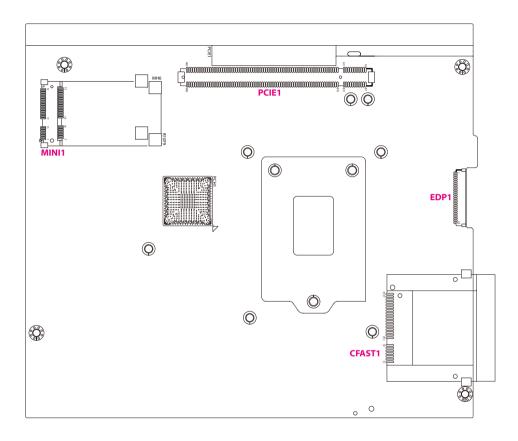
Two-Pin Jumpers: Open (Left) and Short (Right)

Three-Pin Jumpers: Pins 1 and 2 are Short



Locations of the Jumpers and Connectors for NIFB 300

The figure below is the top view of the NIFB 300 main board which is the main board used in NET 300-ECM. It shows the locations of the jumpers and connectors.


Top View

36

Bottom View

Jumpers

AT/ATX Mode Select

Connector type: 1x3 3-pin header

Connector location: ATX1

Pin	Settings
1-2 On	ATX Mode
2-3 On	AT Mode

1-2 On: default

CMOS Clear Select

Connector type: 1x3 3-pin header

Connector location: JP7

Pin	Settings
1-2 On	Normal
2-3 On	Clear CMOS

1-2 On: default

COM3 RI Select

Connector type: 1x3 3-pin header

Connector location: JP1

Pin	Settings
1-2 On	VCC5
2-3 On	VCC12
4-5 On	RING

4-5 On: default

PCH Config Pin Header

Connector type: 1x3 3-pin header

Connector location: JP3

Pin	Settings
1-2 On	NORMAL
2-3 On	CONFIGURE
4-5 On	RECOVERY

1-2 On: default

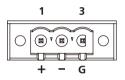
PCle Configuration Settings

Connector type: 1x3 3-pin header

Connector location: JP9

Pin	Settings
1-2 On	PCle x16
2-3 On	PCle x8 + PCle x8

1-2 On: default

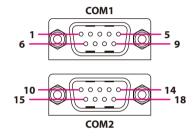


Connector Pin Definitions

External I/O Interfaces - Front Panel 24V DC Power Input

Connector type: Phoenix Contact 1x3 3-pin terminal block

Connector location: PW1

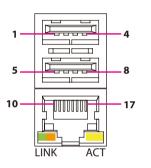


Pin	Definition	Pin	Definition
1	VIN_1	2	VIN_VSS
3	PWR_PIN3	MH1	NA
MH2	NA		

COM1 and COM2 Port

Connector type: DB-9 port, 9-pin D-Sub

Connector location: COM3A (COM1) and COM3B (COM2)


Pin	Definition	Pin	Definition
1	COM_ISODCD#1	2	COM_ISORXD1
3	COM_ISOTXD1	4	COM_ISODTR#1
5	ISO_GND	6	COM_ISODSR#1
7	COM_ISORTS#1	8	COM_ISOCTS#1
9	COM_ISORI#1	MH1	Chassis_GND
MH2	Chassis_GND	10	COM_ISODCD#2
11	COM_ISORXD2	12	COM_ISOTXD2
13	COM_ISODTR#2	14	ISO_GND
15	COM_ISODSR#2	16	COM_ISORTS#2
17	COM_ISOCTS#2	18	COM_ISORI#2
MH1	Chassis_GND	MH2	Chassis_GND

LAN3 and USB 2.0 Ports

Connector type: RJ45 port with LEDs and dual USB 2.0 ports, Type A

Connector location: LAN3A (USB) and LAN3B (LAN)

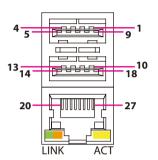
Act	Status
Flashing Yellow	Data activity
Off	No activity

Link	Status
Steady Green	1G network link
Steady Orange	100Mbps network link
Off	10Mbps or no link

USB

Pin	Definition	Pin	Definition
1	P5V_USB_P45	2	USB2N4_C
3	USB2P4_C	4	GND
5	P5V_USB_P45	6	USB2N5_C
7	USB2P5_C	8	GND

LAN3


Pin	Definition	Pin	Definition
9	LAN3_VCC	10	LAN3_MDI0P
11	LAN3_MDI0N	12	LAN3_MDI1P
13	LAN3_MDI1N	14	LAN3_MDI2P
15	LAN3_MDI2N	16	LAN3_MDI3P
17	LAN3_MDI3N	18	GND
19	LAN3_LINK100#_LED	20	LAN3_LINK
21	LAN3_ACT#_LED	22	LAN3_LED_P

LAN2 and USB 3.0 Ports

Connector type: RJ45 port with LEDs and dual USB 3.0 ports, Type A

Connector location: LAN2A (USB) and LAN2B (LAN2)

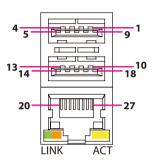
Act	Status
Flashing Yellow	Data activity
Off	No activity

Link	Status
Steady Green	1G network link
Steady Orange	100Mbps network link
Off	10Mbps or no link

USB

Pin	Definition	Pin	Definition
1	P5V_USB_P01	2	USB2N0_C
3	USB2P0_C	4	GND
5	USB3RN1_C	6	USB3RP1_C
7	GND	8	USB3TN1_C
9	USB3TP1_C	10	P5V_USB_P01
11	USB2N1_C	12	USB2P1_C
13	GND	14	USB3RN2_C
15	USB3RP2_C	16	GND
17	USB3TN2_C	18	USB3TP2_C

LAN2


Pin	Definition	Pin	Definition
19	LAN2_VCC	20	LAN2_MDI0P
21	LAN2_MDI0N	22	LAN2_MDI1P
23	LAN2_MDI1N	24	LAN2_MDI2P
25	LAN2_MDI2N	26	LAN2_MDI3P
27	LAN2_MDI3N	28	GND
29	LAN2_LINK100#_LED	30	LAN2_LINK
31	LAN2_ACT#_LED	32	LAN2_ACTPW

LAN1 and USB 3.0 Ports

Connector type: RJ45 port with LEDs and dual USB 3.0 ports, Type A

Connector location: LAN1A (USB) and LAN1B (LAN1)

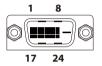
Act	Status
Flashing Yellow	Data activity
Off	No activity

Link	Status
Steady Green	1G network link
Steady Orange	100Mbps network link
Off	10Mbps or no link

USB

Pin	Definition	Pin	Definition
1	P5V_USB_P01	2	USB2N0_C
3	USB2P0_C	4	GND
5	USB3RN1_C	6	USB3RP1_C
7	GND	8	USB3TN1_C
9	USB3TP1_C	10	P5V_USB_P01
11	USB2N1_C	12	USB2P1_C
13	GND	14	USB3RN2_C
15	USB3RP2_C	16	GND
17	USB3TN2_C	18	USB3TP2_C

LAN1


Pin	Definition	Pin	Definition
19	LAN1_VCC	20	LAN1_MDI0P
21	LAN1_MDI0N	22	LAN1_MDI1P
23	LAN1_MDI1N	24	LAN1_MDI2P
25	LAN1_MDI2N	26	LAN1_MDI3P
27	LAN1_MDI3N	28	GND
29	LAN1_LINK100#_LED	30	LAN1_LINK
31	LAN1_ACT#_LED	32	LAN1_ACTPW

DVI-D Connector

Connector type: 24-pin D-Sub, 2.0mm-M-180 (DVI)

Connector location: DVI1

Pin	Definition P		Definition
1	DVI1_DATA2_N_C	2	DVI1_DATA2_P_C
3	GND	4	NA
5	NA	6	DVI1_CTRL_CLK_C
7	DVI1_CTRL_DAT_C	8	NA
9	DVI1_DATA1_N_C	10	DVI1_DATA1_P_C
11	GND	12	NA
13	NA	14	DVI1_PWR_C
15	GND	16	DVI1_HPD
17	DVI1_DATA0_N_C	18	DVI1_DATA0_P_C
19	GND	20	NA
21	NA	22	NA
23	DVI1_CLK_P_C	24	DVI1_CLK_N_C
MH1	Chassis_GND	MH2	Chassis_GND
MH3	Chassis_GND	MH4	Chassis_GND

HDMI

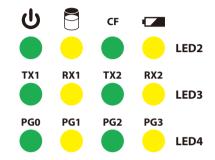
Connector type: HDMI port Connector location: HDMI1

Pin	Definition	Pin	Definition
1	HDMI_DATA2_P_C	2	GND
3	HDMI_DATA2_N_C	4	HDMI_DATA1_P_C
5	GND	6	HDMI_DATA1_N_C
7	HDMI_DATA0_P_C	8	GND
9	HDMI_DATA0_N_C	10	HDMI_CLK_P_C
11	GND	12	HDMI_CLK_N_C
13	NA	14	NA
15	HDMI_CLK	16	HDMI_DAT
17	GND	18	HDMI_PWR_C
19	HDMI_HPD_C		
MH1	Chassis_GND	MH1	Chassis_GND

Audio Connectors

Connector type: 2x 3.5mm TRS Connector location: AU1

Line-out



Mic-in

Pin	Definition	Pin	Definition
1	AGND	2	MIC_OUT-L
3	AGND	4	MIC_JD
5	MIC_OUT-R	MH1	Chassis_GND
MH2	Chassis_GND	MH3	Chassis_GND
MH4	Chassis_GND	NH1	
22	LINE_OUT_LC	23	AGND
24	LINEOUT_JD	25	LINE_OUT_RC

LED Indicators

Connector location: LED2, LED3 and LED4

	Pin	Definition	Pin	Definition
	A1	BAT_LOW	C1	GND
LED2	A2	CFAST_DET_P	C2	CFAST_DET
	А3	SATALED#_P	C3	SATALED#
	A4	PWR_LED_P	C4	PWR_LED_N
	A1	RX2_P	C1	COM2_RXLEDN
LED3	A2	TX2_P	C2	COM2_TXLEDN
LEDS	А3	RX1_P	C3	COM1_RXLEDN
	A4	TX1_P	C4	COM1_TXLEDN
	A1	SIO_GP36_64_P	C1	SIO_GP36_64
LED4	A2	SIO_GP37_65_P	C2	SIO_GP37_65
LED4	А3	SIO_GP15_66_P	C3	SIO_GP15_66
	A4	SIO_GP16_67_P	C4	SIO_GP16_67

46

Internal Connectors System Fan Connector

Connector type: 1x4 4-pin Wafer, 2.54mm pitch

Connector location: FAN1

Pin	Definition	Pin	Definition
1	GND	2	VCC12
3	FAN TAC	4	FAN CTL

LED Pin Header

Connector type: 2x8 16-pin header, 2.0mm pitch

Connector location: LED1

2	0	0	0	0	0	0	0	0	16
1		0	0	0	0	0	0	0	15

Pin	Definition	Pin	Definition
1	PWR_LED_P	2	PWR_LED_N
3	SATALED#_P	4	SATALED#
5	VCC3	6	LAN1_LED_LINK#
7	VCC3	8	LAN2_LED_LINK#
9	VCC3	10	LAN3_LED_LINK#
11	VCC3	12	LAN1_ACT#_LED
13	VCC3	14	LAN2_ACT#_LED
15	VCC3	16	LAN3_ACT#_LED

Debug Port

Connector type: 1x10 10-pin header, 1.0mm pitch

Connector location: DE1

Pin	Definition	Pin	Definition
1	GND	2	RST_SIO_N
3	CLK_PCI_P80	4	LPC_FRAME#
5	LPC_AD3	6	LPC_AD2
7	LPC_AD1	8	LPC_AD0
9	VCC3	10	VCC3
MH1	GND	MH2	GND

SMBus

Connector type: 1x3 3-pin header, 2.0mm pitch

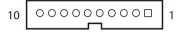
Connector location: JP4

Pin	Definition		
1	SMB_CLK		
2	SMB_DAT		
3	GND		

Remote Power On/Off & S3 Connector

Connector type: 3-pin terminal block connector, 3.81mm pitch

Connector location: JP5



Pin	Definition		
1	PWRBTN#_J		
2	GND		
3	SLP_S3#_C		

COM3 and COM4 Connector

Connector type: 1x10 10-pin header

Connector location: COM1 (COM3) and COM2 (COM4)

Pin	Definition	Pin	Definition
1	COM_DCD#3	2	COM_RXD3
3	COM_TXD3	4	COM_DTR#3
5	GND	6	COM_DSR#3
7	COM_RTS#3	8	COM_CTS#3
9	COM_RI#3_T	10	GND
MH1	GND	MH2	GND

USB 2.0 Connector

Connector type: USB port Connector location: USB1

Pin	Definition	Pin	Definition
1	P5V_USB_P8	2	USB2N8_C
3	USB2P8_C	4	GND
MH1	GND	MH2	GND
MH3	GND		

Line-in Pin Header

Connector type: 1x4 4-pin header, 2.0mm pitch

Connector location: IN1

Pin	Definition	Pin	Definition
1	LINE1-L1	2	AGND
3	LINEIN_JD	4	LINE1-R1

SATA Power Connectors

Connector type: 1x4 4-pin Wafer, 2.54mm pitch

Connector location: CN3 and CN4



Pin	Definition	Pin	Definition
1	VCC12	2	GND
3	GND	4	VCC5

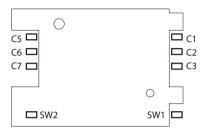
SATA Connectors

Connector type: Standard Serial ATA 7P (1.27mm, SATA-M-180)

Connector location: CN1 and CN2

CN1

Pin	Definition	Pin	Definition
1	GND	2	SATA_TXP0_C
3	SATA_TXN0_C	4	GND
5	SATA_RXN0_C	6	SATA_RXPO_C
7	GND		


CN2

Pin	Definition	Pin	Definition
1	GND	2	SATA_TXP1_C
3	SATA_TXN1_C	4	GND
5	SATA_RXN1_C	6	SATA_RXP1_C
7	GND		

SIM Card Slot

Connector location: SIM1

Pin	Definition	Pin	Definition
C1	UIM_PWR	C2	UIM_RESET
C3	UIM_CLK	C5	GND
C6	UIM_VPP	C7	UIM_DATA
SW1	GND	SW2	GND

GPIO Pin Header

Connector type: 2x5 10-pin header, 2.0mm pitch

Connector location: JP2

	Pin	Definition	Pin	Definition
Γ	1	GPIO_PWR	2	GND
	3	GPIO80	4	GPIO84
	5	GPIO81	6	GPIO85
	7	GPIO82	8	GPIO86
	9	GPIO83	10	GPIO87

Reset Connector

Connector type: 1x2 2-pin header, 1.25mm pitch

Connector location: RESET1

Pin	Definition	
1	PM_RESET#_J	
2	GND	

Power Connector

Connector type: 2x2 4-pin header

Connector location: CON1

Pin	Definition	Pin	Definition
1	GND	2	GND
3	VIN_3	4	VIN_3

Power Button

Connector type: 1x3 3-pin header

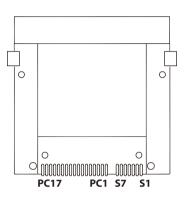
Connector location: PB1

Pin	Definition
1	PWRBTN#_C
2	GND
3	PB_POWER

EDP

Connector type: 1x24 24-pin header, 1.0mm pitch

Connector location: EDP1



Pin	Definition	Pin	Definition
1	GND	2	GND
3	GND	4	EDP_DISP_UTIL
5	EDP_HPD	6	EDP_BKLTEN
7	EDP_VDDEN	8	EDP_BKLTCTL
9	EDP_AUXN	10	EDP_AUXP
11	EDP_TXN3	12	EDP_TXP3
13	EDP_TXN2	14	EDP_TXP2
15	EDP_TXN1	16	EDP_TXP1
17	EDP_TXN0	18	EDP_TXP0
19	GND	20	VCC12
21	VCC12	22	VCC12
23	VCC3	24	VCC3
MH1	GND	MH2	GND

CFast

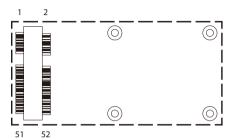
Connector type: CFast Socket Connector location: CFAST1

Pin	Definition	Pin	Definition
S1	GND	PC6	NA
S2	SATA_TP2_C	PC7	GND
S3	SATA_TN2_C	PC8	CFAST_LED1_C
54	GND	PC9	CFAST_LED2_C
S5	SATA_RN2_C	PC10	NA
S6	SATA_RP2_C	PC11	NA
S7	GND	PC12	NA
PC1	CFAST_CDI	PC13	VCC3
PC2	GND	PC14	VCC3
PC3	NA	PC15	GND
PC4	NA	PC16	GND
PC5	NA	PC17	CFAST_CDO_C

PS2 KB/MS Pin Header

Connector type: 2x4 8-pin header, 1.27mm pitch

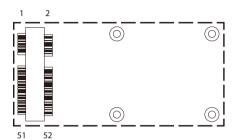
Connector location: JP8



Pin	Definition	Pin	Definition
1	5VSB_PS2	2	5VSB_PS2
3	KDAT	4	MDAT
5	KCLK	6	MCLK
7	GND	8	GND

Mini-PCle Connector (WLAN/GSM)

Connector location: WIFI1


Pin	Definition	Pin	Definition
1	WAKE_N	2	3VSB_MINI1
3	NC	4	GND
5	NC	6	1V5_MINI1
7	MINICARD1CLKREQ#	8	UIM_PWR
9	GND	10	UIM_DATA
11	CLK_WIFI_N_C	12	UIM_CLK
13	CLK_WIFI_P_C	14	UIM_RESET
15	GND	16	UIM_VPP
17	NC	18	GND
19	NC	20	MINICARD1DIS#
21	GND	22	RST_MINIPCIE1
23	PCIE_RN3_WIFI_C	24	3VSB_MINI1
25	PCIE_RP3_WIFI_C	26	GND

Pin	Definition	Pin	Definition
27	GND	28	1V5_MINI1
29	GND	30	SMB_CLK
31	PCH_WIFI_TXN4	32	SMB_DAT
33	PCH_WIFI_TXP4	34	GND
35	GND	36	USB2N6_C
37	GND	38	USB2P6_C
39	3VSB_MINI1	40	GND
41	3VSB_MINI1	42	NA
43	GND	44	NA
45	CL_CLK_C	46	NC
47	CL_DAT_C	48	1V5_MINI1
49	CL_RST#_C	50	GND
51	NC	52	3VSB_MINI2

Mini-PCle/mSATA Connector

Connector location: MINI1

Pin	Definition	Pin	Definition
1	WAKE_N	2	3VSB_MINI2
3	NC	4	GND
5	NC	6	1V5_MINI2
7	MINICARD2CLKREQ#	8	NC
9	GND	10	NC
11	CLK_MINI_N_C	12	NC
13	CLK_MINI_P_C	14	NC
15	GND	16	NC
17	NC	18	GND
19	NC	20	MINICARD2DIS#
21	GND	22	RST_MINIPCIE2
23	PCIE_mSATA_RXP_C _C	24	3VSB_MINI2
25	PCIE_mSATA_RXN_C	26	GND

Pin	Definition	Pin	Definition
27	GND	28	1V5_MINI2
29	GND	30	SMB_CLK
31	PCIE_mSATA_TXN_C	32	SMB_DAT
33	PCIE_mSATA_TXP_C	34	GND
35	GND	36	USB2N7_C
37	GND	38	USB2P7_C
39	3VSB_MINI2	40	GND
41	3VSB_MINI2	42	NC
43	GND	44	NC
45	NC	46	NC
47	NC	48	1V5_MINI2
49	NC	50	GND
51	PCIE_mSATA_SEL_51	52	3VSB_MINI2

PCle x16 Slot

Connector type: PCle x16 Slot Connector location: PCIE1

Pin	Definition	Pin	Definition
A1	PCIE_PRSNT1	B1	VCC12
A2	VCC12	B2	VCC12
А3	VCC12	В3	VCC12
A4	GND	B4	GND
A5	PCIEX16_TCK	B5	PCIE_SMCLK
A6	PCIEX16_TDI	В6	PCIE_SMDAT
A7	NC	В7	GND
A8	PCIEX16_TMS	B8	VCC3
A9	VCC3	В9	PCIEX16_TRST#
A10	VCC3	B10	3VSB
A11	RST_PCIEX16	B11	3VSB
A12	GND	B12	NC
A13	CLK_PEG_A_P	B13	GND
A14	CLK_PEG_A_N	B14	PEG_TXP0_C
A15	GND	B15	PEG_TXNO_C
A16	PEG_RXP0	B16	GND
A17	PEG_RXN0	B17	PRSNT2#_1_C
A18	GND	B18	GND

Pin	Definition	Pin	Definition
A19	NC	B19	PEG_TXP1_C
A20	GND	B20	PEG_TXN1_C
A21	PEG_RXP1	B21	GND
A22	PEG_RXN1	B22	GND
A23	GND	B23	PEG_TXP2_C
A24	GND	B24	PEG_TXN2_C
A25	PEG_RXP2	B25	GND
A26	PEG_RXN2	B26	GND
A27	GND	B27	PEG_TXP3_C
A28	GND	B28	PEG_TXN3_C
A29	PEG_RXP3	B29	GND
A30	PEG_RXN3	B30	NC
A31	GND	B31	NC
A32	NC	B32	GND
A33	NC	B33	PEG_TXP4_C
A34	GND	B34	PEG_TXN4_C
A35	PEG_RXP4	B35	GND
A36	PEG_RXN4	B36	GND

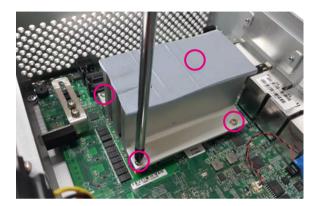
Pin	Definition	Pin	Definition
A37	GND	B37	PEG_TXP5_C
A38	GND	B38	PEG_TXN5_C
A39	PEG_RXP5	B39	GND
A40	PEG_RXN5	B40	GND
A41	GND	B41	PEG_TXP6_C
A42	GND	B42	PEG_TXN6_C
A43	PEG_RXP6	B43	GND
A44	PEG_RXN6	B44	GND
A45	GND	B45	PEG_TXP7_C
A46	GND	B46	PEG_TXN7_C
A47	PEG_RXP7	B47	GND
A48	PEG_RXN7	B48	NC
A49	GND	B49	GND
A50	NC	B50	PEG_TXP8_C
A51	GND	B51	PEG_TXN8_C
A52	PEG_RXP8	B52	GND
A53	PEG_RXN8	B53	GND
A54	GND	B54	PEG_TXP9_C
A55	GND	B55	PEG_TXN9_C
A56	PEG_RXP9	B56	GND
A57	PEG_RXN9	B57	GND
A58	GND	B58	PEG_TXP10_C
A59	GND	B59	PEG_TXN10_C

Pin	Definition	Pin	Definition
A60	PEG_RXP10	B60	GND
A61	PEG_RXN10	B61	GND
A62	GND	B62	PEG_TXP11_C
A63	GND	B63	PEG_TXN11_C
A64	PEG_RXP11	B64	GND
A65	PEG_RXN11	B65	GND
A66	GND	B66	PEG_TXP12_C
A67	GND	B67	PEG_TXN12_C
A68	PEG_RXP12	B68	GND
A69	PEG_RXN12	B69	GND
A70	GND	B70	PEG_TXP13_C
A71	GND	B71	PEG_TXN13_C
A72	PEG_RXP13	B72	GND
A73	PEG_RXN13	B73	GND
A74	GND	B74	PEG_TXP14_C
A75	GND	B75	PEG_TXN14_C
A76	PEG_RXP14	B76	GND
A77	PEG_RXN14	B77	GND
A78	GND	B78	PEG_TXP15_C
A79	GND	B79	PEG_TXN15_C
A80	PEG_RXP15	B80	GND
A81	PEG_RXN15	B81	NC
A82	GND	B82	NC

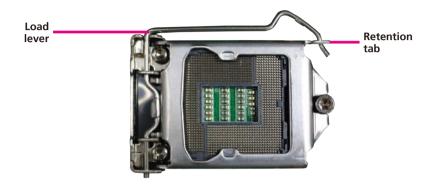
CHAPTER 4: HARDWARE INSTALLATION

Installing a CPU

1. Remove the 4 flat screws on the top cover.

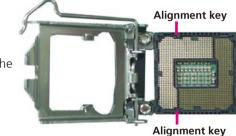


2. Lift up the cover and remove it from the chassis.



3. Remove the mounting screws that secure the heat sink to the chassis.

4. The CPU socket is readily accessible after you have removed the heat sink.


5. Unlock the socket by pushing the load lever down, moving it sideways until it is released from the retention tab; then lift the load lever up.

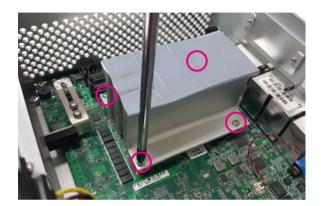
6. Insert the CPU into the socket. The triangular edge on the CPU must align with the corner of the CPU socket shown on the photo.

The CPU's notch will at the same time fit into the socket's alignment key.

- Handle the CPU by its edges and avoid touching the pins.
- The CPU will fit in only one orientation and can easily be inserted without exerting any force.

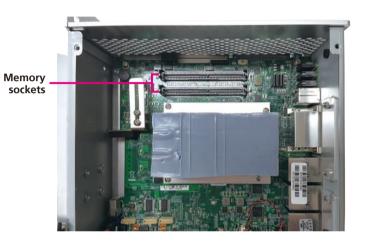
7. Close the load plate and then hook the load lever under the retention tab.

8. Apply thermal paste on top of the CPU.



Do not force the CPU into the socket. Forcing the CPU into the socket may bend the pins and damage the CPU.

9. Tighten the screws to secure the heat sink in place.


Installing a SO-DIMM Memory Module

1. Remove the chassis before installing a SO-DIMM module.

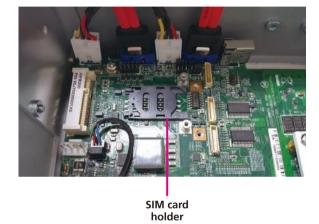
2. Locate the SO-DIMM memory sockets.

3. Insert the memory module into the socket.

4. Apply even pressure to both ends of the module until it is locked by the latches.

5. Ensure the memory module is installed straight.

6. Insert another SO-DIMM module into the socket and apply even pressure to both ends of the module until it is locked by the latches.



Installing a SIM Card

1. Locate the mini-PCle slot and remove the bracket first.

2. Locate the SIM card holder.

3. Release the SIM card cover and place the SIM card into the holder.

4. Close the cover and secure the SIM card into position.

Installing a CFast Card

1. Locate the CFast socket on the top cover.

2. Remove the cover of the CFast socket.

3. Insert the CFast card into the socket.

4. Ensure the CFast card is installed and engaged firmly with a click sound.

Installing a 3G/GSM Module

1. Install the 3G/GSM module into the 3G/GSM slot.

2. Fix the antenna cable to the 3G/GSM module.

3. Locate the antenna hole on the front panel, and insert the antenna jack through the hole.

4. Fix the antenna jack with rings.

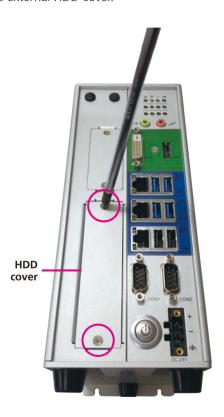

5. Install the antenna.

Installing an mSATA Module

1. Remove the mini-PCle cover on the side panel.

2. Locate the mini-PCIe socket, then install and fix the mSATA module into the socket.

75


3. Ensure both screws are fixed tightly to the socket.

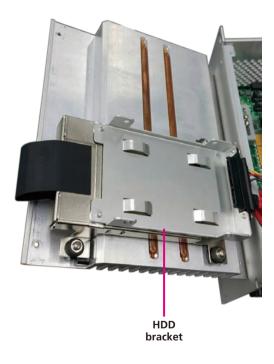
Installing an External SATA Hard Drive

1. Remove the external HDD cover.

2. Pull out the HDD bracket and place the HDD into the bracket.

3. Fix the HDD onto the HDD bracket from the bottom side using screws.

4. Install the HDD bracket into the external HDD drive bay, and secure the external HDD cover back to the drive bay.



Installing an Internal SATA Hard Drive

1. Remove the chassis cover.

2. Locate the internal HDD bracket.

3. Install and fix the HDD to the internal HDD bracket.

Wallmount Mounting

The main mounting method of NET 300-ECM is wallmount. Please locate the wallmount fixing holes at the rear of NET 300-ECM for wallmount mounting.

APPENDIX A: BIOS SETUP

This chapter describes how to use the BIOS setup program for NET 300-ECM. The BIOS screens provided in this chapter are for reference only and may change if the BIOS is updated in the future.

To check for the latest updates and revisions, visit the NEXCOM website at www.nexcom.com.tw

About BIOS Setup

The BIOS (Basic Input and Output System) Setup program is a menu driven utility that enables you to make changes to the system configuration and tailor your system to suit your individual work needs. It is a ROM-based configuration utility that displays the system's configuration status and provides you with a tool to set system parameters.

These parameters are stored in non-volatile battery-backed-up CMOS RAM that saves this information even when the power is turned off. When the system is turned back on, the system is configured with the values found in CMOS.

With easy-to-use pull down menus, you can configure items such as:

- Hard drives, diskette drives, and peripherals
- Video display type and display options
- Password protection from unauthorized use
- Power management features

The settings made in the setup program affect how the computer performs. It is important, therefore, first to try to understand all the setup options, and second, to make settings appropriate for the way you use the computer.

When to Configure the BIOS

- This program should be executed under the following conditions:
- When changing the system configuration
- When a configuration error is detected by the system and you are prompted to make changes to the setup program
- When resetting the system clock
- When redefining the communication ports to prevent any conflicts
- When making changes to the Power Management configuration
- When changing the password or making other changes to the security setup

Normally, CMOS setup is needed when the system hardware is not consistent with the information contained in the CMOS RAM, whenever the CMOS RAM has lost power, or the system features need to be changed.

Default Configuration

Most of the configuration settings are either predefined according to the Load Optimal Defaults settings which are stored in the BIOS or are automatically detected and configured without requiring any actions. There are a few settings that you may need to change depending on your system configuration.

Entering Setup

When the system is powered on, the BIOS will enter the Power-On Self Test (POST) routines. These routines perform various diagnostic checks; if an error is encountered, the error will be reported in one of two different ways:

- If the error occurs before the display device is initialized, a series of beeps will be transmitted
- If the error occurs after the display device is initialized, the screen will display the error message.

Powering on the computer and immediately pressing allows you to enter Setup.

Press the bell key to enter Setup:

Legends

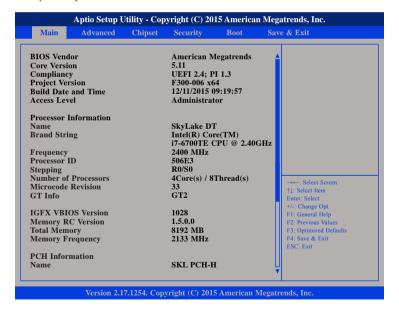
Key	Function
← →	Moves the highlight left or right to select a menu.
†	Moves the highlight up or down between sub-menus or fields.
Esc	Exits the BIOS Setup Utility.
+	Scrolls forward through the values or options of the highlighted field.
-	Scrolls backward through the values or options of the highlighted field.
Tab ! • ──•	Selects a field.
F1	Displays General Help.
F2	Load previous values.
F3	Load optimized default values.
F4	Saves and exits the Setup program.
Enter,	Press <enter> to enter the highlighted sub-menu</enter>

Scroll Bar

When a scroll bar appears to the right of the setup screen, it indicates that there are more available fields not shown on the screen. Use the up and down arrow keys to scroll through all the available fields.

Submenu

When "\oscitage" appears on the left of a particular field, it indicates that a submenu which contains additional options are available for that field. To display the submenu, move the highlight to that field and press



BIOS Setup Utility

Once you enter the AMI BIOS Setup Utility, the Main Menu will appear on the screen. The main menu allows you to select from several setup functions and one exit. Use arrow keys to select among the items and press to accept or enter the submenu.

Main

The Main menu is the first screen that you will see when you enter the BIOS Setup Utility.

System Language

Configures the default language of the system.

System Date

The date format is <day>, <month>, <date>, <year>. Day displays a day, from Monday to Sunday. Month displays the month, from January to December. Date displays the date, from 1 to 31. Year displays the year, from 1999 to 2099.

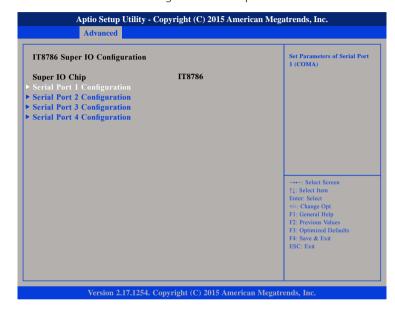
System Time

85

The time format is <hour>, <minute>, <second>. The time is based on the 24-hour military-time clock. For example, 1 p.m. is 13:00:00. Hour displays hours from 00 to 23. Minute displays minutes from 00 to 59. Second displays seconds from 00 to 59.

Advanced

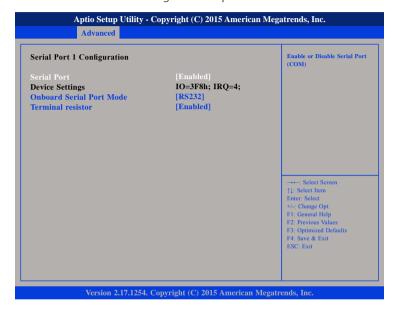
The Advanced menu allows you to configure your system for basic operation. Some entries are defaults required by the system board, while others, if enabled, will improve the performance of your system or let you set some features according to your preference.



Setting incorrect field values may cause the system to malfunction.

IT8786 Super IO Configuration

This section is used to configure the serial ports.


Super IO Chip

Displays the Super I/O chip used on the board.

Serial Port 1 Configuration

This section is used to configure serial port 1.

Serial Port

Enables or disables the serial port.

Onboard Serial Port Mode

Select this to change the serial port mode to RS232, RS422, RS485 or RS485 Auto.

Terminal Resistor

Enables or disables the terminal resistor.

Serial Port 2 Configuration

This section is used to configure serial port 2.

Serial Port

Enables or disables the serial port.

Onboard Serial Port Mode

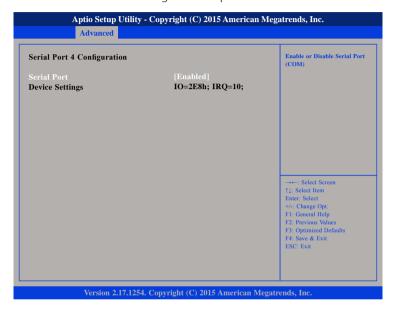
Select this to change the serial port mode to RS232, RS422, RS485 or RS485 Auto.

Terminal Resistor

Enables or disables the terminal resistor.

Serial Port 3 Configuration

This section is used to configure serial port 3.

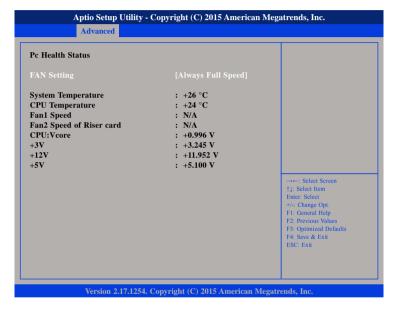


Serial Port

Enables or disables the serial port.

Serial Port 4 Configuration

This section is used to configure serial port 4.


Serial Port

Enables or disables the serial port.

Hardware Monitor

This section is used to monitor hardware status such as temperature, fan speed and voltages.

FAN Setting

Configures the speed of the fan, the options are Always Full Speed, Enable Smart Fan and Disable.

System Temperature

Detects and displays the current system temperature.

CPU Temperature

Detects and displays the current CPU temperature.

Fan1 Speed

Detects and displays fan1 speed.

Fan2 Speed

Detects and displays fan2 speed of the riser card.

VCore

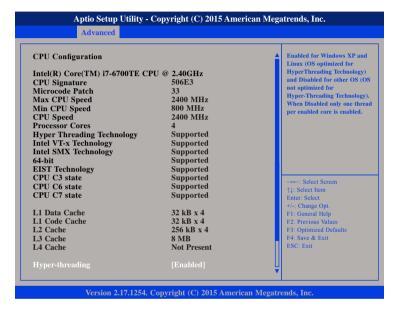
Detects and displays the Vcore CPU voltage.

+3V

Detects and displays 3.3V voltage.

+12V

Detects and displays 12V voltage.

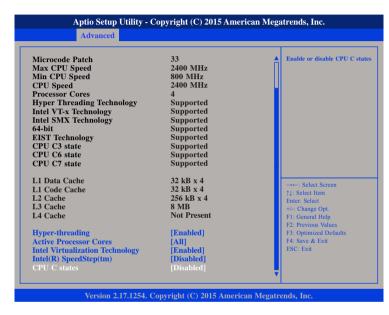

+5V

Detects and displays 5V voltage.

CPU Configuration

This section is used to configure the CPU.

Hyper-threading


Enables or disables hyper-threading technology.

Active Processor Cores

Select the number of cores to enable in each processor package.

Intel® Virtualization Technology

Enables or disables Intel Virtualization technology. When enabled, a VMM can utilize the additional hardware capabilities provided by Vanderpool Technology.

Intel® SpeedStep™

Enables or disables Intel SpeedStep.

CPU C States

Enables or disables CPU C States support.

SATA Configuration

This section is used to configure the SATA drives.

SATA Controller(s)

Enables or disables the SATA controller.

SATA Mode Selection

Configures the SATA mode.

AHCI This option configures the Serial ATA drives to use AHCI (Advanced Host Controller Interface). AHCI allows the storage driver to enable the advanced Serial ATA features which will increase storage performance.

RAID This option allows you to create RAID or Intel Matrix Storage configuration on Serial ATA devices.

CSM Configuration

This section is used to configure the compatibility support module features.

CSM Support

Enables or disables CSM support.

Boot Option Filter

Configures which devices the system will boot from.

Network

91

Enables or disables the boot option for legacy network devices.

Onboard LAN PXE

Enables or disables onboard LAN PXE ROM.

Storage

Enables or disables the boot option for legacy storage devices.

Video

Enables or disables the boot option for legacy video devices.

Other PCI Devices

Determines OpROM execution policy for devices other than network, storage or video.

USB Configuration

This section is used to configure the USB.

Legacy USB Support

Enabled Enables Legacy USB.

Auto Disables support for Legacy when no USB devices are connected.

Disabled Keeps USB devices available only for EFI applications.

XHCI Hand-off

This is a workaround for OSs that does not support XHCI hand-off. The XHCI ownership change should be claimed by the XHCI driver respectively.

Device reset time-out

Selects the USB mass storage device start unit command timeout.

Chipset

This section is used to configure the system based on the specific features of the chipset.

Setting incorrect field values may cause the system to malfunction.

System Agent (SA) Configuration

VT-d

Enables or disables VT-d function on MCH.

Graphics Configuration

Enters the graphics chip settings sub-menu.

PEG Port Configuration


Enters the PEG port settings sub-menu.

Memory Configuration

Enters the memory settings sub-menu.

Graphics Configuration

Primary Display

Select which of IGFX/PEG/PCI graphics device should be primary display or select SG for switchable GFx.

Primary PEG

Select which PEG device should be the primary PEG.

Primary PCIE

Select which PCIE device should be the primary PCIE.

Internal Graphics

Keep IGD enabled based on the setup options.

DVMT Total Gfx Mem

Select DVMT5.0 Total Graphic Memory size used by the internal graphics device.

LCD Control

Primary IGFX Boot Display

Select the video device which will be activated during POST. This has no effect if external graphics is present. Secondary boot display selection will appear based on your selection. VGA modes will be supported only on primary display.

Secondary IGFX Boot Display

Select the secondary display device.

LCD Panel Type

Select the LCD panel used by the internal graphics device by selecting the appropriate setup item.

Panel Scaling

Select the LCD panel scaling option used by the internal graphics device.

Backlight Control

Select the backlight control mode.

BIA

The options are Auto, Disabled and Level 1 to Level 5.

Spread Spectrum Clock Chip

Select how the spread spectrum clock is controlled.

Hardware Controlled by the chip. Software Controlled by the BIOS.

Active LFP

Select the Active LFP configuration.

No LVDS VBIOS does not enable LVDS.

eDP Port-A LFP driven by Int-DisplayPort encoder from Port-A

Panel Color Depth

Select the LFP panel color depth.

PEG Port Configuration

Enable Root Port

Enables or disables the root port.

Max Link Speed

Select the maximum link speed of the PEG device.

Memory Configuration



Memory Configuration

Displays the information on the memory installed.

Security

Administrator Password

Select this to reconfigure the administrator's password.

User Password

Select this to reconfigure the user's password.

Boot

Setup Prompt Timeout

This section configures the number of seconds to wait for the setup activation key. 65535(0xFFFF) denotes indefinite waiting.

Bootup NumLock State

This allows you to determine the default state of the numeric keypad. By default, the system boots up with NumLock on wherein the function of the numeric keypad is the number keys. When set to Off, the function of the numeric keypad is the arrow keys.

Quiet Boot

Enabled Displays OEM logo instead of the POST messages.

Disabled Displays normal POST messages.

Boot Option Priorities

Adjust the boot sequence of the system. Boot Option #1 is the first boot device that the system will boot from, next will be #2 and so forth.

Fast Boot

Enables or disables fast boot technology to speed up the system boot time. This is achieved by skipping specific tests during BIOS POST routine.

Hard Drive BBS Priorities

Sets the order of the legacy devices in this group.

Save & Exit

Save Changes and Exit

To save the changes and exit the Setup utility, select this field then press <Enter>. A dialog box will appear. Confirm by selecting Yes. You can also press <F4> to save and exit Setup.

Discard Changes and Exit

To exit the Setup utility without saving the changes, select this field then press <Enter>. You may be prompted to confirm again before exiting. You can also press <ESC> to exit without saving the changes.

Save Changes and Reset

To save the changes and reset, select this field then press <Enter>. A dialog box will appear. Confirm by selecting Yes.

Discard Changes and Reset

To exit the Setup utility without saving the changes, select this field then press <Enter>. You may be prompted to confirm again before exiting.

Save Changes

To save changes and continue configuring the BIOS, select this field then press <Enter>. A dialog box will appear. Confirm by selecting Yes.

Discard Changes

To discard the changes, select this field then press <Enter>. A dialog box will appear. Confirm by selecting Yes to discard all changes made and restore the previously saved settings.

Restore Defaults

To restore the BIOS to default settings, select this field then press <Enter>. A dialog box will appear. Confirm by selecting Yes.

Save as User Defaults

To use the current configurations as user default settings for the BIOS, select this field then press <Enter>. A dialog box will appear. Confirm by selecting Yes.

Restore User Defaults

To restore the BIOS to user default settings, select this field then press <Enter>. A dialog box will appear. Confirm by selecing Yes.

Boot Override

To bypass the boot sequence from the Boot Option List and boot from a particular device, select the desired device and press <Enter>.

Launch EFI Shell From Filesystem Device

Launches the EFI shell.

APPENDIX B: GPI/O PROGRAMMING GUIDE

GPI/O (General Purpose Input/Output) pins are provided for custom system design. This appendix provides definitions and its default setting for the ten GPI/O pins in NET 300-ECM. The pin definition is shown in the following table:

Pin	GPI/O Mode	PowerOn Default	Address	Pin	GPI/O Mode	PowerOn Default	Address
1	VCC	-	-	2	GND	-	-
3	GPI	Low	A07h (Bit0)	4	GPO	Low	A07h (Bit4)
5	GPI	Low	A07h (Bit1)	6	GPO	Low	A07h (Bit5)
7	GPI	Low	A07h (Bit2)	8	GPO	Low	A07h (Bit6)
9	GPI	Low	A07h (Bit3)	10	GPO	Low	A07h (Bit7)

JP2 - GPI/O Connector

Pin	GPI/O Mode	PowerOn Default	Address
A4	GPO	Low	A00h (Bit6)
A3	GPO	Low	A00h (Bit5)
A2	GPO	Low	A02h (Bit7)
A1	GPO	Low	A02h (Bit6)

LED4 - GPO LED

Control the GPO pin (4/6/8/10) level from I/O port A07h bit (4/5/6/7).

Control the GPO pin (A3/A4) level from I/O port A00h bit (5/6).

Control the GPO pin (A1/A2) level from I/O port A02h bit (6/7).

The bit is Set/Clear indicated output High/Low

GPIO programming sample code

```
#define GPIO PORT
                       0xA00
#define GPO4 HI
                              outportb(GPIO PORT+7. 0x10)
#define GPO4 LO
                              outportb(GPIO PORT+7.0x00)
                              outportb(GPIO PORT+7, 0x20)
#define GPO6 HI
#define GPO6 LO
                              outportb(GPIO PORT+7, 0x00)
#define GPO8 HI
                              outportb(GPIO PORT+7. 0x40)
#define GPO8 LO
                              outportb(GPIO PORT+7, 0x00)
#define GPO10 HI
                              outportb(GPIO_PORT+7.0x80)
#define GPO10 LO
                              outportb(GPIO PORT+7.0x00)
#define GPOA4 HI
                              outportb(GPIO PORT, 0x40)
#define GPOA4 LO
                              outportb(GPIO PORT, 0x00)
#define GPOA3 HI
                              outportb(GPIO PORT, 0x20)
#define GPOA3 LO
                              outportb(GPIO PORT, 0x00)
#define GPOA2 HI
                              outportb(GPIO PORT+2, 0x80)
#define GPOA2 LO
                              outportb(GPIO PORT+2.0x00)
#define GPOA1 HI
                              outportb(GPIO PORT+2, 0x40)
#define GPOA1 LO
                              outportb(GPIO PORT+2, 0x00)
void main(void)
 GPO4 HI:
 GPO6 LO;
 GPO8 HI;
 GPO10 LO;
 GPOA4 HI:
 GPOA3 LO;
 GPOA2 HI;
 GPOA1 LO;
```


APPENDIX C: WATCHDOG PROGRAMMING GUIDE

ITE8786E WatchDog Programming Guide

```
#define Superio Port
                         0x2E
#define Superio LDN
                         0x07
;*Enter the MB PnP mode with 0x87, 0x01, 0x55, 0x55
outportb(Superio Port, 0x87);
outportb(Superio Port, 0x01);
outportb(Superio Port, 0x55);
outportb(Superio Port, 0x55):
;*Set LDN=0x07 point to the WDT function
outportb(Superio Port, Superio LDN);
outportb(Superio Port+1, 0x07);
;*Setup configuration register 0x72, if set 90h is second, set 10h is minute (WDT output through PWRGD)
outportb(Superio Port, 0x72);
outportb(Superio Port+1, 0x90);
;*Setup WDT time-out value. this demo code is used to program the time-out value with 4 sec.
outportb(Superio Port, 0x73);
outportb(Superio Port+1, 0x04);
;*Exit the MB PnP Mode
outportb(Superio Port, 0x02);
outportb(Superio Port+1, 0x02);
```


102